Article:Alg-geom/9702016/unidentified-references

From Knot Atlas
Jump to navigationJump to search
 


 P. Candelas, X.C. de la Ossa, P.S. Green and L. Parkes, A pair of Calabi--Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys.\ B {\bf357} (1991), 21--74  

 D. Dais, M. Henk and G. Ziegler, All Abelian quotient c.i.\  singularities admit projective crepant resolutions in all dimensions, Max Planck Inst. preprint MPI 97--4.  

 V. Ginzburg and M. Kapranov, Hilbert schemes and Nakajima's quiver varieties, unpublished notes, May 1995  

 G. Gonzales-Sprinberg and J.-L. Verdier, Construction g\'eom\'etrique de la correspondance de McKay, Ann. sci. ENS {\bf16} (1983), 409--449  

 F. Hirzebruch and H. H\"ofer, On the Euler number of an orbifold, Math.\ Ann.\ {\bf286} (1990), 255--260  

 Y. Ito, Crepant resolutions of trihedral singularities and the orbifold Euler characteristic, Intern.\ J. Math.\ {\bf6} (1995), 33--43  

 Y. Ito, Gorenstein quotient singularities of monomial type in dimension three, J. Math.\ Sci.\ Univ.\ of Tokyo {\bf2}, (1995), 419--440  

 Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes, Proc.\ Japan Acad.\ {\bf72} (1996), 135--138  

 Y. Ito and I. Nakamura, Hilbert schemes and simple singularities $A_n$ and $D_n$, Hokkaido Univ.\ preprint \#348, 1996, 22 pp.  

 Y. Ito and I. Nakamura, The coinvariant algebra and quivers of a simple singularity (in preparation)  

 Y. Ito and M. Reid, The McKay correspondence for finite subgroups of $\SL(3,\C)$, in Higher Dimensional Complex Varieties (Trento, Jun 1994), M. Andreatta and others Eds., de Gruyter, Mar 1996, 221--240  

 J. McKay, Graphs, singularities and finite groups (Proc.\ Symp.\ in Pure Math, {\bf37}, 1980, 183--186  

 H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ.\ of Tokyo preprint, Preliminary version, Oct 1996, available from http://www.math.tohoku.ac.jp/tohokumath/nakajima/TeX.html  

 I. Nakamura, Simple singularities, McKay correspondence and Hilbert schemes of $G$-orbits, preprint  

 I. Nakamura, Hilbert schemes and simple singularities $E_6$, $E_7$ and $E_8$, Hokkaido Univ.\ preprint \#362, 1996, 21 pp.  

 I. Nakamura, Hilbert schemes of $G$-orbits for Abelian $G$ (in preparation)  

 M. Reid, Young person's guide to canonical singularities, in Algebraic Geometry, Bowdoin 1985, ed. S. Bloch, Proc. of Symposia in Pure Math. {\bf46}, A.M.S. (1987), vol. 1, 345--414  

 O. Riemenschneider, Deformationen von Quotientensingularit\"aten (nach zyklischen Gruppen), Math.\ Ann.\ {\bf209} (1974) 211--248  

 S-S. Roan, On $c_1=0$ resolution of quotient singularity, Intern.\ J. Math.\ {\bf5} (1994), 523--536