Article:Dg-ga/9601011/unidentified-references
From Knot Atlas
Jump to navigationJump to search
M.F. Atiyah, {\em New invariants of 3- and 4-dimensional manifolds}, Symp. Pure Math. 48 (1988) 285-299;
M.F. Atiyah, V.K. Patodi, I.M. Singer, {\em Spectral asymmetry and Riemannian geometry} I and III, Math. Proc. Cambridge Phil. Soc., 77 (1975), 43-69 and 79 (1976) N.1, 71-99;
D. Auckly, {\em Surgery, knots and the Seiberg--Witten equations}, Lectures for the 1995 TGRCIW, preprint;
D. Auckly, {\em The Thurston norm and three-dimensional Seiberg-Witten theory}, to appear in Osaka J. Math.;
A.L. Carey, J. McCarthy, B.L. Wang, R.B. Zhang, {\em Seiberg-Witten monopoles in three dimensions}, preprint;
A.L. Carey, M. Marcolli, B.L. Wang, {\em Exact triangles in Seiberg-Witten Floer theory}, in preparation;
A.L. Carey, B.L. Wang, {\em Seiberg-Witten Floer theory and holomorphic curves}, preprint;
A.L. Carey, B.L. Wang, {\em Floer homology: contact structures and gluing formulae}, preprint;
W. Chen, {\em Casson's invariant and Seiberg-Witten gauge theory}, preprint;
S.K. Donaldson, {\em The orientation of Yang--Mills moduli spaces and 4--manifold topology}, J.Diff.Geom. 26 (1987) 397-428;
S.K. Donaldson, {\em The Seiberg-Witten equations and 4-manifold topology}, Bull. AMS, Vol.33 N.1 (1996), 45-70;
S.K. Donaldson, P.B. Kronheimer, {\em The geometry of four-manifolds}, Oxford 1990;
A. Floer, {\em An instanton-invariant for 3-manifolds}, Comm. Math. Phys. 118 (1988), 215-240;
A. Floer, {\em Morse theory for Lagrangian intersections}, J. Diff. Geom., 28 N.3 (1988) 513-547;
K.A. Froyshov, {\em The Seiberg-Witten equations and four-manifolds with boundary}, preprint;
U. Koschorke, {\em Infinite dimensional K-theory and characteristic classes of Fredholm bundle maps}, Proc. Symp. Pure Math. 15 (1970),
P.B. Kronheimer, T.S. Mrowka, {\em The genus of embedded surfaces in the projective plane}, Math. Research Lett. 1 (1994), 797-808;
P.B. Kronheimer, {\em Monopoles and contact structures}; T.S. Mrowka, {\em Applications of monopoles invariants to contact structures}, talks given at the First Annual International Press Lectures, Irvine 1996;
P.B. Kronheimer, T.S. Mrowka, {\em Monopoles and contact structures}, preprint;
H.B. Lawson, M.L. Michelsohn, {\em Spin geometry}, Princeton University Press, 1989;
Y. Lim, ~~~{\em Seiberg-Witten invariants for 3-manifolds and product formulae}, preprint;
P. Lisca, G. Mati\'c, preprint;
R.B. Lockhard, R.C. McOwen, {\em Elliptic operators on non-compact manifolds}, Ann. Sci. Norm. Sup. Pisa, IV-12 (1985), 409-446;
M. Marcolli, {\em Seiberg-Witten-Floer homology and Heegard splittings}, Internat. J. Math., Vol.7, N.5 (1996) 671-696;
M. Marcolli, B.L. Wang, {\em Equivariant Seiberg-Witten Floer homology}, preprint;
M. Marcolli, R.G. Wang, {\em A $\ZZ$-valued seiberg Witten Floer invariant for three-manifolds with $b^1(Y)>0$}, in preparation;
G. Meng, C. H. Taubes {\em {\underline{SW}} = Milnor Torsion} preprint;
J.W. Morgan, {\em The Seiberg-Witten equations and applications to the topology of smooth four-manifolds}, Princeton University Press, 1996;
J.W. Morgan, T. Mrowka, D. Ruberman, {\em The $L^2$-moduli space and a vanishing theorem for Donaldson polynomial invariants}, International Press, 1994;
J.W. Morgan, S. Szabo, C.H. Taubes, {\em A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture}, preprint;
T. Mrowka, P. Oszvath, B. Yu, {\em Seiberg-Witten monopoles on Seifert fibred spaces}, preprint;
D. Salamon, {\em Spin geometry and Seiberg-Witten invariants}, in preparation;
M. Schwartz, {\em Morse Homology}, Birkh\"auser;
L. Simon, {\em Asymptotics for a class of non-linear evolution equations, with applications to geometric problems}, Ann. of Math. 118 (1983) 525-571;
C.H. Taubes, {\em Casson's invariant and gauge theory}, J. Diff. Geom. 31 (1990), 547-599;
R.G. Wang, {\em On Seiberg-Witten Floer invariants and the generalized Thom problem}, preprint;
E. Witten, {\em Supersymmetry and Morse theory}, J. Diff. Geom. 17 (1982), 661-692;
E. Witten, {\em Monopoles and four-manifolds}, Math. Research Lett. 1 (1994), 769-796;