Article:Dg-ga/9709022/unidentified-references
From Knot Atlas
Jump to navigationJump to search
S. Agmon and L. Nirenberg, {\em Lower bounds and uniqueness theorems for solutions of differential equations in Hilbert spaces\/}, Comm. Pure Appl. Math. {\bf 20} (1967) 207--229. N. Aronszajn, {\em A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order\/}, J. Math. Pures Appl. (9) {\bf 36} (1957) 235--249. M. F. Atiyah and I. M. Singer, {\em The index of elliptic operators, IV\/}, Ann. of Math. {\bf 93} (1971) 119-138. R. Brussee, {\em The canonical class and the $C^\8$-properties of K\"ahler surfaces\/}, New York J. Math. {\bf 2} (1996) 103--146 (electronic). S. K. Donaldson, {\em An application of gauge theory to four-dimensional topology\/}, J. Differential Geom. {\bf 18} (1983) 279--315. \bysame, {\em Connections, cohomology and the intersection forms of four manifolds\/}, J. Differential Geom. {\bf 24} (1986) 275--341. \bysame, {\em Irrationality and the $h$-cobordism conjecture}, J. Differential Geom. {\bf 26} (1987), 141--168. \bysame, {\em The orientation of Yang-Mills moduli spaces and 4-manifold topology\/}, J. Differential Geom. {\bf 26} (1987) 397--428. \bysame, {\em The Seiberg-Witten equations and four-manifold topology\/}, Bull. Amer. Math. Soc. {\bf 33} (1996) 45--70. \bysame, {\em Polynomial invariants for smooth 4-manifolds}, Topology {\bf 29} (1990) 257-315. S. K. Donaldson and P. B. Kronheimer, {\em The Geometry of Four-Manifolds\/}, Oxford Univ. Press, Oxford, 1990. P. M. N. Feehan and T. G. Leness, {\em $\PU(2)$ monopoles, I: Regularity, Uhlenbeck compactness, and transversality\/}, submitted to a print journal, September 11, 1996, and in revised form, May 5, 1997. \bysame, {\em Uhlenbeck compactness and transversality for the moduli space of $\PU(2)$ monopoles\/}, submitted to a print journal, June 2, 1997. \bysame, {\em $\PU(2)$ monopoles, II: Cohomology classes and links of singularities in the top Uhlenbeck level}, in preparation. \bysame, {\em $\PU(2)$ monopoles, III: Existence of gluing and obstruction maps}, in preparation. \bysame, {\em $\PU(2)$ monopoles, IV: Surjectivity of gluing maps}, in preparation. R. Fintushel and R. Stern, {\em $\SO(3)$-connections and the topology of 4-manifolds\/}, J. Differential Geom. 20 (1984) 523-539. \bysame, {\em Donaldson invariants of 4-manifolds with simple type\/}, J. Differential Geom. {\bf 42} (1995) 577--633. \bysame, {\em Immersed spheres in 4-manifolds and the immersed Thom conjecture\/}, Turkish J. Math. {\bf 19} (1995) 145-157. \bysame, {\em The blow-up formula for Donaldson invariants\/}, Ann. Math. {\bf 143} (1996) 529--546. \bysame, {\em Rational blow-downs}, to appear in J. Differential Geometry. R. Friedman and J. W. Morgan, {\em Smooth Four-Manifolds and Complex Surfaces\/}, Springer, Berlin, 1994. R. Friedman and Z. Qin, {\em Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces\/}, Commun. Anal. \& Geom. (1995) 11--83. M. Furuta, {\em The $10/8$ conjecture\/}, in preparation. L. G\"ottsche, {\em Modular forms and Donaldson invariants for 4-manifolds with $b^+=1$}, J. Amer. Math. Soc. {\bf 9} (1996), 827--843. I. S. Gradshteyn and I. M. Ryzhik, {\em Table of Integrals, Series, and Products}, Corrected and Enlarged Edition, Academic, New York, 1980. U. Koschorke, {\em Infinite-dimensional K-theory and characteristic classes of Fredholm bundle maps\/}, in Proc. Symp. Pure Math. {\bf XV}, pp. 95-133, Amer. Math. Soc., Providence, RI, 1970. D. Kotschick, {\em $\SO(3)$ invariants for four-manifolds with $b^+=1$\/}, Proc. London Math. Soc. {\bf 63} (1991) 426--448. D. Kotschick and J. W. Morgan, {\em $\SO(3)$ invariants for four-manifolds with $b^+=1$. II\/}, J. Differential Geom. {\bf 39} (1994) 433--456. P. B. Kronheimer and T. S. Mrowka, private communication. P. B. Kronheimer and T. S. Mrowka, {\em The genus of embedded surfaces in the projective plane\/}, Math. Research Letters {\bf 1} (1994) 797--808. \bysame, {\em Embedded surfaces and the structure of Donaldson's polynomial invariants\/}, J. Differential Geom. {\bf 43} (1995) 573--734. \bysame, {\em Monopoles and contact structures\/}, preprint. A-K. Liu and T-J. Li, {\em General wall-crossing formula\/}, Math. Research Letters {\bf 2} (1995) 797-810. J. N. Mather, {\em Stratifications and mappings\/}, Dynamical Systems, M. M. Peixoto (ed.), Academic Press, New York, 1973. J. W. Morgan, {\em The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds\/}, Princeton Univ. Press, Princeton, NJ, 1996. J. W. Morgan and T. S. Mrowka, {\em A note on Donaldson's polynomial invariants\/}, International Math. Research Notes, No. 10 (1992) 223--230. J. W. Morgan and P. S. Ozsv\'ath, {\em private communication}. J. W. Morgan, Z. Szab\'o, and C. H. Taubes, {\em A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture}, J. Differential Geom. {\bf 44} (1996) 706--788. T. S. Mrowka, {\em A Local Mayer-Vietoris Principle for Yang-Mills Moduli Spaces}, Harvard University Thesis, 1988. T. S. Mrowka, P. S. Ozsv\'ath, and B. Yu, {\em Seiberg-Witten monopoles on Seifert-fibered spaces\/}, MSRI preprint, December 1996. P. S. Ozsv\'ath, {\em Some blowup formulas for $\SU(2)$ Donaldson polynomials\/}, J. Differential Geom. {\bf 40} (1994) 411--447. V. Y. Pidstrigach, {\em From Seiberg-Witten to Donaldson: $\SO(3)$ monopole equations\/}, Lecture at the Newton Institute, Cambridge, December 1994. V. Y. Pidstrigach and A. N. Tyurin, {\em Invariants of the smooth structure of an algebraic surface arising from the Dirac operator\/}, Russian Acad. Sci. Izv. Math. {\bf 40} (1993) 267--351. Y. Ruan, {\em Virtual neighborhoods and monopole equations\/}, to appear. C. H. Taubes, {\em Self-dual Yang-Mills connections on non-self-dual 4-manifolds\/}, J. Differential Geom. {\bf 17} (1982) 139--170. \bysame, {\em Self-dual connections on 4-manifolds with indefinite intersection matrix}, J. Differential Geom. {\bf 19} (1984) 517--560. \bysame, {\em A framework for Morse theory for the Yang-Mills functional\/}, Invent. Math. {\bf 94} (1988) 327--402. \bysame, {\em The stable topology of self-dual moduli spaces}, J. Differential Geom. {\bf 29} (1989) 162--230. E. Witten, {\em Monopoles and four-manifolds\/}, Math. Research Letters {\bf 1} (1994) 769--796. H-J. Yang, {\em Transition functions and a blow-up formula for Donaldson polynomials\/}, Columbia University Thesis, 1992.