Article:Hep-th/9201003/unidentified-references

From Knot Atlas
Jump to navigationJump to search
 \small \addtolength{\itemsep}{-6pt}  

 V. Kazakov, Phys. Lett. {\bf 159B} (1985) 303; F. David, Nucl. Phys. {\bf B257} (1985) 45; V. Kazakov, I. Kostov, and A. Migdal, Phys. Lett. {\bf 157B} (1985) 295; J. Fr\"ohlich, {\it The statistical mechanics of surfaces,} in {\sl Applications of Field Theory to Statistical Mechanics}, L. Garrido ed. (Springer, 1985).  

 F. David, Phys. Lett. {\bf 159B} (1985) 303; D. Boulatov, V. Kazakov, and A. Migdal, Nucl. Phys. {\bf B275 [FS117]} (1986) 543; A. Billoire and F. David, Phys. Lett. {\bf 186B} (1986) 279; J. Jurkievic, A. Krzywicki, and B. Peterson, Phys. Lett. {\bf 186B} (1986) 273; J. Ambjorn, B. Durhuus, J. Fr\"ohlich, and P. Orland, Nucl. Phys. {\bf B270 [FS16]} (1986) 457.  

 V. Kazakov, Mod. Phys. Lett. {\bf A4} (1989) 2125.  

 E. Br\'ezin and V. Kazakov, {\it Exactly solvable field theories of closed strings,} Phys. Lett. {\bf B236} (1990) 144.\\ M. Douglas and S. Shenker, {\it Strings in less than one dimension,} Nucl. Phys. {\bf B335} (1990) 635.\\ D.J. Gross and A. Migdal, {\it Nonperturbative two dimensional quantum gravity,} Phys. Rev. Lett. {\bf 64} (1990) 127.  

 D.J. Gross and A. Migdal, {\it A nonperturbative treatment of two dimensional quantum gravity,} Nucl. Phys. {\bf B340} (1990) 333.\\ T. Banks, M. Douglas, N. Seiberg, and S. Shenker, {\it Microscopic and macroscopic loops in nonperturbative two dimensional gravity,} Phys. Lett. {\bf 238B} (1990)~279.  

 E. Br\'ezin, M. Douglas, V. Kazakov, and S. Shenker, {\it The Ising model coupled to 2d gravity: a nonperturbative analysis,} Phys. Lett. {\bf 237B} (1990) 43\\ D.J. Gross and A. Migdal, {\it Nonperturbative solution of the Ising model on a random surface,} Phys. Rev. Lett. {\bf 64} (1990) 717.\\ C. Crnkovi\'c, P. Ginsparg, and G. Moore, {\it The Ising model, the Yang-Lee edge singularity, and 2d quantum gravity,} Phys. Lett. {\bf 237B} (1990) 196.  

 M. Douglas, {\it Strings in less than one dimension and the generalized KdV hierarchies,} Phys. Lett. {\bf 238B} (1990) 176.  

 E. Br\'ezin, V. Kazakov, and Al.B. Zamolodchikov, {\it Scaling violation in a field theory of closed strings in one physical dimension,} Nucl. Phys. {\bf B338} (1990).\\ D.J. Gross and N. Miljkovi\'c, {\it A nonperturbative solution of $D=1$ string theory,} Phys. Lett. {\bf 238B} (1990) 217.\\ P. Ginsparg and J. Zinn-Justin, {\it 2-d Gravity and 1-d matter,} Phys. Lett. {\bf 240B} (1990) 333.\\ D.J. Gross and I.R. Klebanov, {\it One-dimensional string theory on a circle,} Nucl. Phys. {\bf B344} (1990) 475.  

 {\sl Random Surfaces, Quantum Gravity and Strings,} proceedings of the 1990 Carg\`ese workshop, O. Alvarez, E. Marinari, and P. Windey eds. (plenum Press, 1991).\\ D.J. Gross, {\it Nonperturbative string theory,} in the Proceedings of the {\sl International Colloquium on Modern Quantum Field Theory,} Bombay, 1990.\\ I.R. Klebanov, {\it String theory in two dimensions,} lectures at 1991 Trieste Spring School on {\sl String Theory and Quantum Gravity}, Princeton preprint PUPT-1271 (July, 1991).\\ P. Ginsparg, {\it Matrix models of 2d gravity,} lectures at 1991 Trieste Summer School, Los Alamos preprint (December, 1991).  

 E. Witten, {\it On the topological phase of two dimensional gravity,} Nucl. Phys. {\bf B340} (1990) 281.  

 E. Witten, {\it Two dimensional gravity and intersection theory on moduli space,} Surveys In Diff. Geom. {\bf 1} (1991) 243.  

 J. Labastida, M. Pernici, and E. Witten, {\it Topological gravity in two dimensions,} Nucl. Phys. {\bf B310} (1988) 611.\\ D. Montano and J. Sonnenschein, {\it The topology of moduli space and quantum field theory,} Nucl. Phys. {\bf B313} (1989) 258; Nucl. Phys. {\bf 324} (1990) 348.\\ R. Myers and V. Periwal, {\it Topological gravity and moduli space,} Nucl. Phys. {\bf 333} (1990) 536.  

 J. Distler, {\it 2d quantum gravity, topological field theory and the multicritical matrix models,} Nucl. Phys. {\bf B342} (1990) 523.  

 E. Verlinde and H. Verlinde, {\it A solution of two-dimensional topological quantum gravity,} Nucl. Phys. {\bf B348} (1991) 457.  

 R. Dijkgraaf and E. Witten, {\it Mean field theory, topological field theory, and multi-matrix models,} Nucl. Phys. {\bf B342} (1990) 486.  

 K. Li, {\it Topological gravity with minimal matter;} {\it Recursion relations in topological gravity with minimal matter,} Nucl. Phys. {\bf 354} (1991) 711, 725.  

 R. Dijkgraaf, E. Verlinde, and H. Verlinde, {\it Topological strings in $d<1$,} Nucl. Phys. {\bf B352} (1991) 59.  

 E. Witten, {\it The $N$ matrix model and gauged WZW models,} IAS preprint IASSNS-HEP-91/26 (June, 1991).  

 E. Witten, {\it Algebraic geometry associated with matrix models of two dimensional gravity,} IAS preprint IASSNS-HEP-91/74 (October, 1991).  

 M. Kontsevich, {\it Intersection theory on the moduli space of curves,} Funk. Anal. i Pril. {\bf 25} (1991) 50 (in Russian).  

 M. Kontsevich, {\it Intersection theory on the moduli space of curves and the matrix Airy function,} 30 Arbeitstagung Bonn, Max-Planck-Institut preprint MPI/91-47.  

 M. Kontsevich, {\it Intersection theory on the moduli space of curves and the matrix Airy function,} Max-Planck-Institut preprint MPI/91-77.  

 E. Witten, Lectures at IAS, Fall 1991.  

 R. Dijkgraaf, E. Verlinde, and H. Verlinde, {\it Loop equations and Virasoro constraints in non-perturbative 2d quantum gravity,} Nucl. Phys. {\bf B348} (1991) 435.  

 M. Fukuma, H. Kawai, and R. Nakayama, {\it Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity,} Int. J. Mod. Phys. {\bf A6} (1991) 1385.  

 B.H. Lian and G.J. Zuckerman, {\it New selection rules and physical states in 2d gravity: conformal gauge,} Phys. Lett. {\bf 254} (1991) 417.  

 S. Kharchev, A. Marschakov, A. Mironov, A. Morozov, A. Zabrodin, {\it Unification of all string models with $c<1$,} Lebedev Institute preprint FIAN/TD-9/91.  

 C. Itzykson and J.-B. Zuber, {\it Combinatorics of the Modular Gro    up II: The Kontsevich Integrals,} Saclay preprint SPhT/92-001, submitted to Int. J. Mod. Phys.  

 G. Segal and G. Wilson, {\it Loop groups and equations of KdV type,} Publ. Math. I.H.E.S. {\bf 61} (1985) 1.  

 R. Dijkgraaf, E. Verlinde, and H. Verlinde, {\it Notes on topological string theory and 2d quantum gravity,} in {\sl String Theory and Quantum Gravity}, Proceedings of the Trieste Spring School 1990, M. Green {\it et al.} eds. (World-Scientific, 1991).  

 P. Deligne and M. Mumford, {\it The irreducibility of the space of curves of given genus,} Publ. I.H.E.S. {\bf 45} (1969) 75.  

 D. Mumford, {\it Towards an enumerative geometry of the moduli space of curves,} in {\sl Arithmetic and Geometry,} M. Artin and J. Tate eds. (Birkh\"auser, Basel, 1983).  

 S. Morita, {\it Characteristic classes of surface bundles,} Invent. Math. {\bf 90} (1987) 551.  

 E. Miller, {\it The homology of the mapping class group,} J. Diff. Geom. {\bf 24} (1986) 1.  

 P. Deligne, Letter to E. Witten (October, 1989).  

 J. Horne, {\it Intersection theory and two dimensional gravity at genus 3 and 4,} Mod. Phys. Lett. {\bf A5} (1990) 2127.  

 C. Faber, {\it Chow rings of moduli spaces of curves: I and II,} Ann. Math. {\bf 132} (1990) 331; 421.  

 K. Strebel, {\sl Quadratic Differentials} (Springer-Verlag, 1984).  

 R.C. Penner, {\it The decorated Teichm\"uller space of punctured surfaces,} Commun. Math. Phys. {\bf 113} (1987) 299; {\it Perturbative series and the moduli space of Riemann surfaces,} J. Diff. Geom. {\bf 27} (1988) 35.  

 G. 't Hooft, Nucl. Phys. {\bf B72} (1974) 461.  

 J. Harer and D. Zagier, {\it The Euler characteristic of the moduli space of curves,} Invent. Math. {\bf 185} (1986) 457.  

 I.M. Gelfand and L.A. Dikii, {\it The resolvent and Hamiltonian systems,} Funct. Anal. Appl. {\bf 11:2} (1977) 93.  

 V.E. Zakharov, Funk. Anal. i Pril. {\bf 14} (1980) 89.  

 I. Krichever, {\it Topological minimal models and dispersionless Lax equation,} Turin preprint, Commun. Math. Phys. to appear (1991); {\it Topological minimal models and soliton equations,} Landau Institute preprint (1991).  

 M. Sato, {\it Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds,} RIMS Kokyuroku {\bf 439} (1981) 30.\\ M. Sato and Y. Sato, {\it Soliton equations as dynamical systems in an infinite dimensional Grassmannian,} in {\sl Nonlinear Partial Differential Equations in Applied Sciences,} P.Lax, H. Fujita, and G. Strang eds. (North-Holland, Amsterdam, 1982).  

 E. Date, M. Jimbo, M. Kashiwara, T. Miwa, {\it Transformation groups for soliton equations,} RIMS Symp. {\sl Nonlinear Integrable Systems---Classical Theory and Quantum Theory} (World Scientific, Singapore, 1983).  

 T. Miwa, Proc. Jap. Acd. {\bf 58A} (1982) 9.  

 G. Moore, {\it Geometry of the string equations,} Commun. Math. Phys. 133 (1990) 261; {\it Matrix models of 2d gravity and isomonodromic deformation,} in {\sl Random Surfaces, Quantum Gravity and Strings}, Proceedings of the 1990 Carg\`ese workshop, O. Alvarez, E. Marinari, and P. Windey eds. (Plenum Press, 1991).  

 M. Adler and P. van Moerbeke, {\it The $W_p$-gravity version of the Witten-Kontsevich model}, Brandeis preprint (September, 1991).  

 Harish-Chandra, {\it Differential operators on a semisimple Lie algebra,} Am. J. Math. {\bf 79} (1987) 87.  

 M.L. Mehta, {\it A method of integration over matrix variables,} Commun. Math. Phys. {\bf 79} (1981) 327.  

 C. Itzykson and J.-B. Zuber, {\it The planar approximation II,} J. Math. Phys. {\bf 21} (1980) 411.  

 R.F. Picken, {\it The Duistermaat-Heckman integration formula on flag manifolds,} J. Math. Phys. {\bf B31} (1990) 616.  

 A. Miranov, A. Morozov, Phys. Lett. {\bf B252} (1990) 47. Yu. Makeenko, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. {\bf 356} (1991) 574. H.S. La, Commun. Math. Phys. {\bf 140} (1991) 569. A.M. Semikhatov, Lebedev Institute preprints.  

 J. Goeree, {\it $W$ constraints in 2-d quantum gravity,} Nucl. Phys. {\bf B358} (1991) 73  

 M. Fukuma, H. Kawai, and R. Nakayama, {\it Infinite dimensional Grassmannian structure of two-dimensional quantum gravity,} University of Tokyo preprint UT-572 (November, 1990).  

 E. Witten, {\it On the Kontsevich model and other models of two dimensional gravity,} IAS preprint IASSNS-HEP-91/24 (June, 1991).  

 D.J. Gross and M. Newman, {\it Unitary and Hermitian matrices in an external field II: the Kontsevich model and continuum Virasoro constraints,} Princeton preprint (December, 1991).  

 A. Marschakov, A. Mironov, and A. Morozov, {\it On equivalence of topological and quantum 2d gravity,} Lebedev Institute preprint FIAN/TD/04-91.  

 E. Witten, {\it Topological quantum field theory,} Commun. Math. Phys. {\bf 117} (1988) 353.  

 E. Witten, {\it Topological sigma models,} Commun. Math. Phys. {\bf 118} (1988) 411.  

 E. Witten, {\it Introduction to cohomological field theories,} Int. J. Mod. Phys. {\bf A6} (1991) 2775.  

 P. van Baal, {\it An introduction to topological Yang-Mills theory,} Acta Phys. Polon. {\bf B21} (1990) 73.  

 D. Birmingham, M. Blau, M. Rakowski, and G. Thompson, {\it Topological field theory,} preprint CERN-TH 6045/91, to be published in Physics Reports.  

 M.F. Atiyah, {\it Topological quantum field theories,} Publ. Math. I.H.E.S. {\bf 68} (1988) 175.  

 R. Dijkgraaf, {\it A geometrical approach to two-dimensional conformal field theory,} Ph.D. Thesis (Utrecht, 1989).  

 S. Shenker, {\it The strength of nonperturbative effects in string theory,} in {\sl Random Surfaces, Quantum Gravity and Strings}, Proceedings of the 1990 Carg\`ese workshop, O. Alvarez, E. Marinari, and P. Windey eds. (Plenum Press, 1991).  

 T. Eguchi and S.-K. Yang, {\it $N=2$ superconformal models as topological field theories,} Mod. Phys. Lett {\bf A5} (1990) 1693.  

 W. Lerche, C. Vafa, and N.P. Warner, {\it Chiral rings in $N=2$ superconformal theories,} Nucl. Phys {\bf B324} (1989) 427.  

 B. Greene and R. Plesser, {\it Duality in Calabi-Yau moduli space,} Nucl. Phys. {\bf B338} (1990) 15.  

 C. Vafa, {\it Topological Landau-Ginzburg models,} Mod. Phys. Lett. {\bf A6} (1990) 337.  

 K. Ito, {\it Topological phase of $N=2$ superconformal field theory and topological Landau-Ginzburg field theories,} Phys. Lett. {\bf 250} (1990) 91.  

 E. Martinec, {\it Algebraic geometry and effective lagrangians,} Phys. Lett. {\bf 217B} (1989) 431; {\it Criticality, catastrophe and compactifications,} in V.G. Knizhnik memorial volume, 1989.  

 C. Vafa and N. Warner, {\it Catastrophes and the classification of conformal field theories,} Phys. Lett. {\bf 218B} (1989) 51.  

 A. Cappelli, C. Itzykson, and J.-B. Zuber, {\it The $ADE$ classification of minimal and $A_1^{(1)}$ conformal theories,} Commun. Math. Phys. {\bf 113} (1987) 1.  

 K. Saito, Publ. RIMS {\bf 19} (1983) 1231.\\ M. Saito, Ann. Inst. Fourier {\bf 39:1} (1989) 27.  

 B. Blok and A. Varchenko, {\it Topological conformal field theories and the flat coordinates,} IAS preprint IASSNS-HEP-91/5 (January, 1991).  

 W. Lerche, D.J. Smit, and N.P. Warner, {\it Differential equations for periods and flat coordinates in two-dimensional matter theories,} Preprint UCB-PTH-91-39 (July, 1991).  

 E. Verlinde and N.P. Warner, {\it Topological Landau-Ginzburg matter at $c=3$,} IAS preprint IASSNS-HEP-91-16 (March, 1991).  

 D. Kutasov, {\it Geometry on the space of conformal field theories and contact terms,} Phys. Lett {\bf B220} (1989) 153.  

 J. Distler and P. Nelson, {\it Topological couplings and contact terms in 2d field theory,} Commun. Math. Phys. {\bf 138} (1991) 273.