Article:Math.AG/9803120/unidentified-references
From Knot Atlas
Jump to navigationJump to search
V.~Batyrev and D.~Dais, {\it Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry}, Topology, {\bf 35} (1996), 901--929. P.~Baum, W.~Fulton and R.~MacPherson, {\it Riemann-Roch and topological $K$-theory for singular varieties}, Acta. Math. {\bf 143} (1979), 155--192. P.~Berthelot, A.~Grothendieck and L.~Illusie, {\it Th\'eorie des intersections et th\'eor\`eme de Riemann-Roch}, Lecture Notes in Math. {\bf 225}, 1971. N.~Chriss and V.~Ginzburg, {Representation theory and complex geometry}, Birkh\"auser, 1997. D.~Eisenbud, {Commutative algebra with a view toward algebraic geometry}, Grad. Texts in Math. {\bf 150}, Springer-Verlag, 1994. G.~Ellinsrud and S.A.~Str\o mme, {\it Towards the Chow ring of the Hilbert scheme of $\proj^2$}, J. Reine Angew. Math. {\bf 441} (1993), 33--44. J.~Fogarty, {\it Algebraic families on an algebraic surface}, Amer. J. Math. {\bf 90} (1968), 511--521. V.~Ginzburg and M.~Kapranov, {\it Hilbert schemes and Nakajima's quiver varieties}, 1995 May, unpublished manuscript. G.~Gonzales-Sprinberg and J.L.~Verdier, {\it Construction g\'eometrique de la correspondence de McKay}, Ann. Sci. \'Ecole Norm. Sup. {\bf 16} (1983), 409--449. Y.~Ito and I.~Nakamura, {\it McKay correspondence and Hilbert schemes}, Proc. Japan Acad. {\bf 72} (1996), 135--138; {\it Hilbert schemes and simple singularities}, Proc. Europian Algebraic Geometry Conf., Warwick 1996 (to appear). Y.~Ito and M.~Reid, {\it The McKay correspondence for finite subgroups of $\SL(3,\C)$}, in Higher Dimensional Complex Varieties, Proc. Internat. Conf., Trento 1994 (1996), 221--240. B.~Iversen, {\it Local Chern classes}, Ann. Sci. \'Ecole Norm. Sup. {\bf 9} (1976), 155-169. M.~Kapranov, {\it Chow quotients of Grassmannians}, in Gelfand Seminar, Adv. in Soviet Math. 16 Part 2, AMS 1993, 29--110. P.B.~Kronheimer, {\it The construction of ALE spaces as a hyper-K\"ahler quotients}, J. Differential Geom. {\bf 29} (1989), 665--683. P.B.~Kronheimer and H.~Nakajima, {\it Yang-Mills instantons on ALE gravitational instantons}, Math. Ann. {\bf 288} (1990), 263--307. J.~McKay, {\it Graphs, singularities, and finite groups}, in Proc. Symp. in Pure Math. {\bf 37} (1980), 183--186. H.~Nakajima, {\it Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras}, Duke Math. {\bf 76} (1994) 365--416. \bysame, {\it Varieties associated with quivers}, in ``Representation theory of algebras and related topics'', CMS conference proceedings {\bf 19}, AMS (1996) 139--157. \bysame, {\it Gauge theory on resolution of simple singularities and simple Lie algebras}, Inter. Math. Res. Notices, {\bf 2} (1994) 61--74; {\it Instantons and affine Lie algebras}, Nucl. Phys. B (Proc. Suppl.) {\bf 46} (1996) 154--161; {\it Quiver varieties and Kac-Moody algebras}, Duke Math (to appear). \bysame, {\it Lectures on Hilbert schemes of points on surfaces}, preprint 1996. I.~Nakamura, {\it Hilbert schemes of abelian group orbits}, preprint 1998.