Article:Math.AG/9809094/unidentified-references
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				  
 V.~V. Batyrev,  {\em Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties}, J. Algebraic Geom., {\bf 3} (1994) 493-535.  
 V.~V. Batyrev, L.~A. Borisov, {\em Dual Cones and Mirror Symmetry for Generalized  Calabi-Yau Manifolds},  Mirror Symmetry II (B. Greene and S.-T. Yau, eds.), International Press, Cambridge, 1997, 65-80 (1995).  
 V.~V. Batyrev, L.~A. Borisov, {\em Mirror Duality and String-theoretic Hodge Numbers}, Invent. Math.,  {\bf 126}(1996), Fasc. 1, 183-203.  
 V.~V. Batyrev, D.~I. Dais, {\em Strong McKay Correspondence, String-theoretic Hodge Numbers and Mirror Symmetry}, Topology, {\bf 35}(1996), 901-929.  
 P.~Candelas, X.~C. de~la Ossa, P.~S. Green, and L.~Parkes, {\em A pair of   {C}alabi--{Y}au manifolds as an exactly soluble superconformal theory},     Nuclear Phys. B {\bf 359} (1991), 21--74.  
 V.~I. Danilov, {\em The Geometry of Toric Varieties}, Russian Math. Surveys, {\bf 33}(1978), 97-154.  
 W. Fulton, {\em Introduction to toric varieties}, Princeton University Press (1993).  
 A. B. Givental, {\em Equivariant Gromov-Witten Invariants}, preprint alg-geom/ 9603021.  
 B. R. Greene, {\em String Theory on Calabi-Yau Manifolds}, preprint hep-th/ 9702155.  
 V.~Kac, {\em Vertex algebras for beginners}, University Lecture Series, {\bf 10}, American Mathematical Society, Providence, RI, 1997.  
 W.~Lerche, C.~Vafa, P.~Warner, {\em Chiral rings in N=2 superconformal theories}, Nucl. Phys. {\bf B324} (1989), 427-474.  
 D.~R. Morrison, {\em Making Enumerative Predictions by Means of Mirror Symmetry}, Mirror Symmetry II (B. Greene and S.-T. Yau, eds.), International Press, Cambridge, 1997, 457-482.  
 T. Oda, {\em Convex Bodies and Algebraic Geometry - An  Introduction to the Theory of Toric Varieties}, Ergeb. Math. Grenzgeb. (3), vol. 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.  
 A. Schwarz, {\em Sigma-models having supermanifolds as target spaces}, Lett. Math. Phys. {\bf 38} (1996), 91.  
 E.~Witten, {\em Mirror manifolds and topological field theory}, Essays on Mirror Manifolds (S.-T. Yau, ed.), International Press, Hong Kong, 1992, 120--159.   
