Article:Math.AG/9809172/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 S.\ Barannikov and M.\ Kontsevich, {\em Frobenius manifolds and formality of Lie algebras of polyvector fields}, Internat.\ Math.\ Res.\ Notices, no.4 (1998), 201-215.  

 K.\ Fukaya, {\em Morse homotopy, $A_{\infty}$-category and Floer homologies}, in Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993), Univ.\ Seoul 1993, pp. 1-102.  

 P.\ Griffiths and J.\ Harris, {Principles of algebraic geometry}, John Wiley \& Sons, 1978.  

 V.K.A.M.\ Gugenheim and J.D.\ Stasheff, {\em On perturbations and $A_{\infty}$-structures}, Bull.\ Soc.\ Math.\ Belg.\ {\bf 38} (1986) 237-246.   

 L.\ Johansson and L.\ Lambe, {\em Transfering algebra structures up to homology equivalence}, preprint (Stockholm University, September 23, 1998).  

 M.\ Kontsevich, {\em Feynman diagrams and low-dimensional topology}, First European Congress of Mathematics, Vol.\ II (Paris, 1992) (B\"urkh\"auser, Basel), 1994, pp.\ 97-121.  

 M.\ Kontsevich, {\em Homological algebra of mirror symmetry}, Proceedings of the International Congress of Mathematicians, Vol.1 (Z\"urich, 1994) (B\"urkh\"auser, Basel), 1995, pp.\ 120-139.   

 S.A.\ Merkulov, {\em Formality of canonical symplectic complexes and Frobenius manifolds}, Internat.\ Math.\ Res.\ Notices, no.\ 14 (1998), 727-733.  

 M.\ Penkava and A.\ Schwarz, {\em $A_{\infty}$ algebras and the cohomology of moduli spaces}, Lie Groups and Lie algebras: E.B.\ Dynkin's seminar, AMS Providence, 1995, pp.\ 91-107.  

 J.D.\ Stasheff, {\em On the homotopy associativity of $H$-spaces, II}, Trans.\ Amer.\ Math.\ Soc.\ {\bf 108} (1963), 293-312.  

 J.D.\ Stasheff, {\em Higher homotopy algebras: string field theory and Drinfeld's quasi-Hopf algebras}, in Proceedings of the XXth International Conference on Differential Geometric methods in Theoretical Physics (New York, 1991)(River Edge, NJ), vol.1, 1992, pp.408-425.  

 J.D.\ Stasheff, {\em Closed string field theory, strong homotopy Lie algebras and the operad actions of moduli space}, Perspectives on  Mathematics and Physics (R.C.\ Penner and S.Y.\ Yau, eds.), International Press, 1994, hep-th/930461, pp.\ 265-288.