Article:Math.AG/9912109/unidentified-references
From Knot Atlas
Jump to navigationJump to search
C.~Bartocci, U.~Bruzzo and G.~Sanguinetti, {\em Categorical mirror symmetry for K3 surfaces}, preprint, 1998, {\tt math-ph/9811004}. V.~V. Batyrev, {\em Variations of mixed Hodge structure of affine hypersurfaces in algebraic tori}, Duke Math. J. {\bf 69} (1993), 349--409. P.~Berthelot, A.~Grothendieck, L.~Illusie, {\em Th\'{e}orie des intersections et th\'{e}or\`{e}me de Riemann--Roch}, Springer Lecture Notes Math. {\bf 225}, 1971. P.~Candelas, X.~C. de~la Ossa, P.~S. Green and L.~Parkes, {\em A pair of {C}alabi--{Y}au manifolds as an exactly soluble superconformal theory}, Nuclear Phys. B {\bf 359} (1991), 21--74. D.~A. Cox and S.~Katz, {\em Mirror symmetry and algebraic geometry}, Math. Surveys and Monographs, Vol. 68, American Math. Soc., 1999. V.~I. Danilov, {\em The geometry of toric varieties}, Russ. Math. Surveys {\bf 33} (1978), 97-154. P.~Deligne, {\em Action du groupe des tresses sur une cat\'{e}gorie}, Invent. Math. {\bf 128} (1997), 159-175. A.~Erdelyi, W.~Magnus, F.~Oberhettinger and F.~G. Tricomi, {\em Higher transcendental functions. Based, in part, on notes left by Harry Bateman}, Vol.1, McGraw--Hill Book Co., New York--Toronto--London, 1953. W.~Fulton, {\em Introduction to toric varieties}, Annals of Mathematics Studies, Study 131, Princeton University Press, 1993. I.~M. Gelfand, A.~V. Zelevinsky and M.~M. Kapranov, {\em Hypergeometric functions and toral varieties}, Funct. Analysis and its Appl. {\bf 23} (1989), 94-106. I.~M. Gelfand, M.~M. Kapranov and A.~V. Zelevinsky, {\em Discriminants, resultants and multidimensional determinants}, Birkh\"auser Boston, 1994. I.~M. Gelfand, M.~M. Kapranov and A.~V. Zelevinsky, {\em Generalized Euler integrals and A--hypergeometric functions}, Adv. in Math. {\bf 84} (1990), 255-271. S.~I. Gelfand and Y.~I. Manin, {\em Methods of homological algebra}, Translated from the 1988 Russian original, Springer-Verlag, Berlin, 1996. % A.~B. Givental, {\em Homological geometry and mirror symmetry}, Proc. Internat. Congr. Math. Z\"urich 1994 (S.~D. Chatterji, ed.), vol.~1, Birkh\"auser Verlag, Basel, Boston, Berlin, 1995, 472--480. B.~R. Greene and Y.~Kanter, {\em Small volumes in compactified string theory}, Nucl. Phys. B {\bf 497} (1997) 127--145. B.~R. Greene, D.~R. Morrison and C.~Vafa, {\em A geometric realization of confinement}, Nucl. Phys. B {\bf 481} (1996) 513--538. B.~R. Greene and M.~R. Plesser, {\em Duality in {C}alabi--{Y}au moduli space}, Nuclear Phys. B {\bf 338} (1990), 15--37. B.~R. Greene and S.-T.~Yau (eds.), {\em Mirror Symmetry II}, Studies in Advanced mathematics vol. 1, American Math. Soc., International Press (1997). V.~Guillemin, {\em Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces,} Progress in Math. vol. 22, Birkh\"auser Boston, 1994. M.~Kontsevich, Lecture at Rutgers University, November 11, 1996, (unpublished). B.~Moishezon and M.~Teicher, {\it Braid group technique in complex geometry, I}, Braids (Santa Cruz, CA, 1986), Amer. Math. Soc, 425--555. S.~Mukai, {\em Duality between $D(X)$ and $D(\tilde{X})$ with its application to Picard sheaves}, Nagoya Math. J. {\bf 81} (1981), 153--175. S.~Mukai, {\em On the moduli space of bundles on a $K3$ surface I}, Vector bundles on algebraic varieties (Bombay, 1984), Tata. Inst. Fund. Res., Bombay, 1987, 341--413. M.~Reid, {\em Decomposition of toric morphisms}, Arithmetic and geometry, vol.~II, Birkh\"auser Boston, 1983, 395--418. A.~N. Rudakov Et Al, {\em Helices and Vector Bundles,} Seminaire Rudakov, London Math. Soc. Lecture Note Series {\bf 148}, Cambridge Univ. Press, 1990. % M.~Saito, B.~Sturmfels and N.~Takayama, {\em Gr\"obner deformations of hypergeometric differential equations}, Springer Verlag, Berlin, Heidelberg, 2000. J.-L.~Verdier, {\em Des cat\'egories d\'eriv\'ees des cat\'egories ab\'eliennes,} With a preface by Luc Illusie (G.~Maltsiniotis, ed.), Ast\'erisque, {\bf 239} (1996). E.~T. Whittaker and G.~N. Watson, {\em A course of modern analysis}, Fourth Edition, Cambridge University Press, 1940. % O.~Zariski, {\em On the problem of existence of algebraic functions of two variables possessing a given branch curve}, Amer. J. of Math. {\bf 51} (1929), 305-328.