Article:Math.DG/0003099/unidentified-references
From Knot Atlas
Jump to navigationJump to search
M. Abreu, \textit{K\"ahler geometry of toric varieties and extremal metrics}, Internat. J. Math. \textbf{9} (1998), 641--651. \href{http://www.ams.org/mathscinet-getitem?mr=99j:58047}{MR 99j:58047} A. Besse, \emph{Einstein Manifolds}, Springer-Verlag, New York, 1987. \href{http://www.ams.org/mathscinet-getitem?mr=88f:53087}{MR 88f:53087} S. Bochner, \textit{Curvature and Betti numbers, II}, Ann. Math. \textbf{50} (1949), 77--93. \href{http://www.ams.org/mathscinet-getitem?mr=10:571f}{MR 10:571f} S. Bochner and K. Yano, \emph{Curvature and Betti Numbers}, Annals of Math. Studies, No.~32, Princeton University Press Princeton, 1953. \href{http://www.ams.org/mathscinet-getitem?mr=15:989f}{MR 15:989f} \'E. Cartan, \textit{Sur la structure des groupes inifinis de transformations}, Ann. \'Ec. Norm. \textbf{3} (1904), 153--206. (Reprinted in Cartan's Collected Works, Part II.) B. Y. Chen, \textit{Some topological obstructions to Bochner-K\"ahler metrics and their applications}, J. Diff. Geom. \textbf{13} (1978), 547--558. \href{http://www.ams.org/mathscinet-getitem?mr=81f:32037}{MR 81f:32037} J. Deprez, et al, \textit{Classifications of K\"ahler manifolds satisfying some curvature conditions}, Sci. Rep. Niigata Univ. Ser. A \textbf{24} (1988), 1--12. \href{http://www.ams.org/mathscinet-getitem?mr=89d:53045}{MR 89d:53045} A. Derdzi\'nski, \textit{Self-dual K{\"a}hler manifolds and Einstein manifolds of dimension four}, Compositio Math. \textbf{49 } (1983), 405--433. \href{http://www.ams.org/mathscinet-getitem?mr=84h:53060}{MR 84h:53060} N. Ejiri, \textit{Bochner-K\"ahler metrics}, Bull. Sci. Math. \textbf{108} (1984), 423--436. \href{http://www.ams.org/mathscinet-getitem?mr=86g:53026}{MR 86g:53026} W. Fulton and J. Harris, \textit{Representation Theory}, Graduate Texts in Mathematics, no. 129, Springer-Verlag, New York, 1991. \href{http://www.ams.org/mathscinet-getitem?mr=93a:20069}{MR 93a:20069} V. Guillemin, \textit{Kaehler metrics on toric varieties}, J. Diff. Geom. \textbf{40} (1994), 285--309. \href{http://www.ams.org/mathscinet-getitem?mr=95h:32029}{MR 95h:32029} S. Helgason, \emph{Differential Geometry, Lie Groups, and Symmetric Spaces}, Academic Press, Princeton, 1978. \href{http://www.ams.org/mathscinet-getitem?mr=80k:53081}{MR 80k:53081} U.-H. Ki and B. H. Kim, \textit{Manifolds with Kaehler-Bochner metric}, Kyungpook Math. J. \textbf{32} (1992), 285--290. \href{http://www.ams.org/mathscinet-getitem?mr=93m:53075}{MR 93m:53075} J. Leysen, et al %% Full author list: Leysen, J.; Petrovi\'c-Torga\v sev, M.; %%Verstraelen, L., \textit{Some curvature conditions in Bochner-Kaehler manifolds}, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. \textbf{65} (1987), 85--94. \href{http://www.ams.org/mathscinet-getitem?mr=90b:53027}{MR 90b:53027} S. Kobayashi and K. Nomizu, \emph{Foundations of Differential Geometry, vol.~II}, John Wiley \&~Sons, New York, 1963. \href{http://www.ams.org/mathscinet-getitem?mr=38:6501}{MR 38:6501} K. Mackenzie, Lie algebroids and Lie pseudoalgebras, {\em Bull. London Math. Soc. } {\bf 27} (1995), 97--147. \href{http://www.ams.org/mathscinet-getitem?mr=MR96i:58183}{MR 96i:58183} M. Matsumoto, \textit{On K\"ahlerian spaces with parallel or vanishing Bochner curvature tensor}, Tensor (N.S.) \textbf{20} (1969), 25--28. \href{http://www.ams.org/mathscinet-getitem?mr=39:3433}{MR 39:3433} M. Matsumoto and S. Tanno, \textit{K\"ahlerian spaces with parallel or vanishing Bochner curvature tensor}, Tensor (N.S.) \textbf{27} (1973), 291--294. \href{http://www.ams.org/mathscinet-getitem?mr=49:7943}{MR 49:7943} J. Pradines, \textit{Th\'eorie de {L}ie pour les groupo\"\i des diff\'erentiables. {C}alcul diff\'erenetiel dans la cat\'egorie des groupo\"\i des infinit\'esimaux,} C. R. Acad. Sci. Paris S\'er. A-B \textbf{264} (1967), A245--A248. \href{http://www.ams.org/mathscinet-getitem?mr=MR35:7242}{MR 35:7242} J. Pradines, \textit{Troisi\`eme th\'eor\`eme de Lie sur les groupo\"{\i}des diff\'e\-ren\-tiables,} C. R. Acad. Sci. Paris S\'er. A-B \textbf{267} (1968), A21--A23. \href{http://www.ams.org/mathscinet-getitem?mr=MR37:6969}{MR 37:6969} C. Procesi, \textit{The invariant theory of $n\times n$ matrices}, Advances in Math. \textbf{19} (1976), 306--381. \href{http://www.ams.org/mathscinet-getitem?mr=54:7512}{MR 54:7512} N. Pu\v{s}i\'c, \textit{On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian space}, Zb. Rad. \textbf{4} (1990), 55--64. \href{http://www.ams.org/mathscinet-getitem?mr=92j:53014 }{MR 92j:53014 } N. Pu\v{s}i\'c, \textit{On $HB$-flat hyperbolic Kaehlerian spaces}, Mat. Vesnik \textbf{49} (1997), 35--44. \href{http://www.ams.org/mathscinet-getitem?mr=98i:53044}{MR 98i:53044} K. Shiga, \textit{Cohomology of Lie algebras over a manifold. I \& II}, J. Math. Soc. Japan, \textbf{26} (1974), 324--361, 587--607. \href{http://www.ams.org/mathscinet-getitem?mr=51:4267}{MR 51:4267} \href{http://www.ams.org/mathscinet-getitem?mr=51:4268}{MR 51:4268} A. Cannas da Silva and A. Weinstein, \textit{Geometric Models for Noncommutative Algebras}, University of Californiat at Berkeley Lecture Notes, American Mathematical Society, 1999. S. Tachibana and R. Liu, \textit{Notes on Kaehlerian metrics with vanishing Bochner curvature tensor}, Kodai Math. Sem. Rep. \textbf{22} (1970), 313--321. \href{http://www.ams.org/mathscinet-getitem?mr=42:1030}{MR 42:1030} H. Takagi and Y. Watanabe, \textit{K\"ahlerian manifolds with vanishing Bochner curvature tensor satisfying $R(X,\,Y)áR_1=0$}, Hokkaido Math. J. \textbf{3} (1974), 129--132. \href{http://www.ams.org/mathscinet-getitem?mr=49:3736}{MR 49:3736} D. Van Lindt and L. Verstraelen, \textit{A survey on axioms of submanifolds in Riemannian and K\"ahlerian geometry}, Colloq. Math. \textbf{54} (1987), 193--213. \href{http://www.ams.org/mathscinet-getitem?mr=89h:53115}{MR 89h:53115}