Article:Math.DG/0101249/unidentified-references
From Knot Atlas
Jump to navigationJump to search
U. Abresch, {\it Constant mean curvature tori in terms of elliptic functions}, J. reine angew. Math. 374 (1987), 169--192. J. Bolton, F. Pedit, and L.M. Woodward, {\it Minimal surfaces and the affine Toda field model}, J. reine angew. Math. 459 (1995), 119--150. J. Bolton and L.M. Woodward, {\it Congruence theorems for harmonic maps from a Riemann surface into $\CP^n$ and ${\cal S}^n$}, J. London Math. Soc. 45 (1992), 363--376. R.K. Bullough and R.K. Dodd, {\it Polynomial conserved densities for the sine-Gordon equations}, Proc. Roy. Soc. London A352 (1977), 481--503. F.E. Burstall, D. Ferus, F. Pedit, and U. Pinkall, {\it Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras}, Ann. Math. 138 (1993), 173--212. I. Castro and F. Urbano, {\it New examples of minimal Lagrangian tori in the complex projective plane}, Manuscripta math. 85 (1994), 265--281. J. Eells and J.C. Wood, {\it Harmonic maps from surfaces into projective spaces}, Advances in Math. 49 (1983), 217--263. D. Ferus, F. Pedit, U. Pinkall, and I. Sterling, {\it Minimal tori in ${\cal S}^4$}, J. Reine Angew. Math. 429 (1992), 1--47. A.P. Fordy and J.C. Wood, editors, {\it Harmonic Maps and Integrable Systems}, Aspects of Math. E23, Vieweg, Wiesbaden, 1994. F.R. Harvey, {\it Spinors and calibrations}, Perspectives in Math. 9, Academic Press, San Diego, 1990. R. Harvey and H.B. Lawson, {\it Calibrated geometries}, Acta Math. 148 (1982), 47--157. N. Kapouleas, {\it Compact constant mean curvature surfaces in Euclidean three-space}, J. Diff. Geom. 33 (1991), 683--715. G. Lawlor, {\it The angle criterion}, Invent. math. 95 (1989), 437--446. I. McIntosh, {\it A construction of all non-isotropic harmonic tori in complex projective space}, Int. J. Math. 6 (1995), 831--879. I. McIntosh, {\it Two remarks on the construction of harmonic tori in $\CP^n$}, Int. J. Math. 7 (1996), 515--520. I. McIntosh, {\it On the existence of superconformal\/ $2$-tori and doubly periodic affine Toda fields}, J. Geom. Phys. 24 (1998), 223--243. R.A. Sharipov, {\it Minimal tori in the five-dimensional sphere in $\C^3$}, Theoretical and Mathematical Physics 87 (1991), 363--369. G. Tzitz\'eica, {\it Sur une nouvelle classe de surfaces}, C.R. Acad. Sci. Paris 150 (1910), 955--956. H. Wente, {\it Counterexample to a conjecture of H. Hopf}, Pacific J. Math. 121 (1986), 193--243.