Article:Math.DG/0106141/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 U.Abresch, {\it Constant mean curvature tori in terms of elliptic functions}, J. reine angew. Math. {\bf 374} (1987), 169-192.   

 E.D.Belokolos, A.I.Bobenko, V.Z.Enol'skii, A.R.Its and V.M.Matveev,  Algebro-geometric approach to nonlinear integrable equations,   Springer-Verlag, 1994.  

{A.I.Bobenko,  \em All constant mean curvature tori in $R^3, S^3, H^3$ in terms of theta-functions, \em Math.Ann. {\bf 290}(1991),209-245.}   

{A.I.Bobenko, \em Exploring surfaces through Methods from the theory of integrable systems. Lecture on Bonnet Problem, \em SFB288 Preprint No. 403 (1999).}  

{J.Bolton, F.Pedit and L.M.Woodward, \em Minimal surfaces and the affine Toda field modle, \em J. reine angew. Math. {\bf 459}(1995), 119-150.}  

{J.Bolton and L.M.Woodward, \em The affine Toda equations and minimal surfaces, \em in: Integrable Systems and Harmonic maps, A.P. Fordy and J.C. Wood, ed., Aspects of Mathematics E23, Vieweg, 1994. }  

{ R.K.Bullough and R.K.Dodd, \em Polynomial conserved densities for the sine-gordon equations, \em Proc. R. Soc. London A. {\bf 352}(1977), 481-503.}  

{F.E.Burstall, \em Harmonic tori in spheres and complex projective spaces, \em J. reine angew. Math. {\bf 469}(1995), 149-177.}  

{F.E.Burstall, D.Ferus, F.Pedit and U.Pincall,  \em Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, \em Ann. of Math. {\bf 138}(1993), 173-212.}  

{F.E.Burstall and F.Pedit, \em Harmonic maps via Adler-Kostant-Symes theory,  \em in: Harmonic Maps and Integrable Systems, A.P. Fordy and J.C. Wood, ed.,  Aspects of Mathematics E23, Vieweg, 1994.  }   

{I.Yu.Cherdantsev and R.A.Sharipov, \em Finite-gap solutions of the Bullough-Dodd-Zhiber-Shabat equation, \em Theor. Math. Physics, {\bf 82}:1 (1990),108-111.}  

{I.Castro and F.Urbano, \em New examples of minimal Lagrangian tori in the complex projective plane, \em Manuscripta Math. {\bf 85}(1994), 265-281.}  

{B.A.Dubrovin, \em Theta-functions and non-linear equations, \em Uspekhi Mat. Nauk, {\bf 36}:2 (1981), 11-80 = Russian Math. Surveys, {\bf 36}:2 (1981), 11-92.}   

{J.Eells and J.C.Wood,  \em Harmonic maps from surfaces into projective spaces,  \em Adv. in  Math., {\bf 49}(1983), 217-263.}   

{J.D.Fay, Theta-Functions on Riemann Surfaces, Lecture Nots in Math. 352, Springer-Verlag, 1973.}  

{D.Ferus, F.Pedit, U.Pinkall and I.Sterling, \em Minimal tori in $S^4$, \em J. reine angew. Math. {\bf 429}(1992), 1-47.}          

{M.A.Guest, Harmonic Maps, Loop Groups, and Integral Systems, Cambridge Univ. Press,1997.}  

{N.N.Hitchin, \em Harmonic maps from a 2-torus to the 3-sphere, \em J. Diff. Geom. 31 (1990), 627-710.}  

{N.J.Hitchin, \em Integrable systems in Riemannian geometry, \em J. Diff. Geom. suppl. 4 (1998), 21-81.}  

{A.R.Its, \em Liouville's theorem and the method of the inverse problem, \em J. Soviet Math. {\bf 31}: 6 (1985), 3330-3338.}  

{D.Joyce,  \em Special Lagrangian 3-folds and integrable systems, \em math.DG/010249, 2001.}   

{A.M.Li and C.P.Wang, \em Geometry of surfaces in $\mathbb CP^2$, \em Preprint.}  

 A.V.Mikhailov, \em The reduction problem and the inverse scattering method, \em Physica {\bf 3D}(1981),  73-117.  

{S.M.Natanzon, \em Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves, \em Russian Math. Surveys 54:6,(1999), 1091-1147 =Uspekhi Mat. Nauk 54:6, 3-60.}   

{Y.Ohnita, \em Toda equations and harmonic maps, \em In : State of the art and perspectives in studies on nonlinear integrable  systems (Japanese) (Kyoto, 1993). RIMS Kokyuroku  No. 868 (1994), 66--73.}            

{U.Pinkall and I.Sterling, \em On the classification of constant mean curvature tori, \em Ann. of Math. {\bf 130} (1989), 407-451.}  

{R.A.Sharipov, \em Minimal tori in the five-dimensional sphere in ${\mathbb C}^3$, \em Theor. Math. Physics, {\bf 87}:1 (1991), 363-369.}  

{M.Tzitz\' eica, \em Sur une nouvelle classe de surfaces, \em C. R. Acad. Sci. Paris, {\bf 150}(1910), 955-956.}   

 {Wang} {C.P.Wang, \em The classification of homogeneous surfaces in ${\mathbb C}P^{2}$, \em in: Geometry and Topology of Submanifolds X,  eds. by W.H. Chen {\it et. al.}, World Scientific, 2000.}  

{H.Wente, \em Counterexample to a conjecture of H. Hopf, \em Pacific J. Math. {\bf 121} (1986), 193-243.}