Article:Math.DG/0204340/unidentified-references
From Knot Atlas
Jump to navigationJump to search
S. Bauer, {\em On connected sums of four dimensional manifolds}, Preprint, available at {\tt www.mathematik.uni-bielefeld.de/sfb343/preprints} S. Bauer, {\em A stable cohomotopy refinement of Seiberg-Witten invariants: II}, Preprint, available at {\tt www.mathematik.uni-bielefeld.de/}\,$\tilde{}$\,{\tt bauer} M. Berger, {\em Nonlinearity and Functional Analysis}, Academic Press, N.Y. 1977 M. C. Crabb, K. Knapp, {\em On the codegree of negative multiples of the Hopf map}, Proc. Roy. Soc. Edinburgh, {\bf 107 A} (1987), pp. 87-107. T. tom Dieck, {\em Transformation Groups}. de Gruyter, Berlin, 1987. S. K. Donaldson, {\em An application of gauge theory to four-dimensional topology}, Jour. Diff. Geom. {\bf 18} (1983), pp. 279-315. S. K. Donaldson, {\em The orientation of Yang-Mills moduli spaces and 4-dimensional topology}, Jour. Diff. Geom. {\bf 26} (1987), pp. 397-428. N. Elkies, {\em A characterization of the ${\Z}^n$-lattice,} Math. Res. Lett., {\bf 2} (1995), 321-326. M. Furuta, {\em Monopole equation and the $11\over8$-conjecture} Math. Res. Lett. {\bf 8} (2001), pp. 293-301. M. Furuta, {\em Stable homotopy version of Seiberg-Witten invariant} Preprint, available at {\tt www.mpim-bonn.mpg.de} I. M. James, {\em Cross-sections of Stiefel manifolds}, Proc. Lond. Math. Soc. (3), 8 (1958), pp. 536-547. P. Kronheimer and T. Mrowka, {\em The genus of embedded surfaces in the projective plane}, Math. Res. Letters (1994), pp. 797-808. N. H. Kuiper, {\em The homotopy type of the unitary group of Hilbert space}, Topology {\bf 3} (1965), pp. 19-30. B. Schmidt, Thesis (in preparation). A. S. Schwarz, {\em }, Dokl. Akad. Nauk USSR {\bf 154}, pp.61-63. G. Segal, {\em Fredholm complexes} Quart. J. Math. Oxford (2), {\bf 21}, (1970), pp. 385-402. C. H. Taubes, {\em The Seiberg-Witten invariants and symplectic forms} Math. Res. Letters {\bf 1} (1994), 809-822. E. Witten, {\em Monopoles and four-manifolds}, Math. Res. Lett. {\bf 1}(1994), PP. 769-796.