Article:Math.DG/9907080/unidentified-references
From Knot Atlas
Jump to navigationJump to search
M.F. Atiyah, V.K. Patodi, I.M. Singer, {\em Spectral asymmetry and Riemannian geometry, I}, Math. Proc. Camb. Phil. Soc.77 (1975), 43-69. P.J. Braam, S.K. Donaldson, {\em Floer's work on instanton homology, knots and surgery}, Floer Memorial Volume, Progress in Mathematics, Vol. 133; Birkh\"auser 1995. S.E. Cappell, R. Lee, E.Y. Miller, {\em Self-adjoint elliptic operators and manifold decompositions. I: Low eigenmodes and stretching}, Commun. Pure Appl. Math. 49, No.8, (1996) 825-866. A. Carey, M. Marcolli, B.L. Wang, {\em Exact triangles in Seiberg-Witten Floer theory, Part I: the geometric triangle}, preprint. S. Dostoglou, D. Salamon, {\em Self-dual instantons and holomorphic curves}, Ann. of Math. 139 (1994) 581-640. R. Fintushel, R. Stern, {\em Integer graded instanton homology groups for homology three-spheres}, Topology 31 (1992), no. 3, 589--604. A. Floer {\em An Instanton-Invariant for 3-Manifolds}, Commun. Math. Phys. 118 (1988), 215-240. D. Freed, K. Uhlenbeck, {\em Instantons and 4-manifolds}, MSRI Lecture notes, Springer-Verlag, 1984. P. Hartman, {\em Ordinary differential equations}, Birkh\"auser 1982. R.B. Lockhard, R.C. Mc Owen {\em Elliptic operators on non-compact manifolds}, Ann. Sc. Norm. Sup. Pisa, IV-12 (1985), 409-446. M. Marcolli, B.L. Wang, {\em Equivariant Seiberg-Witten Floer homology}, preprint. M. Marcolli, B.L. Wang, {\em Exact triangles in Seiberg-Witten Floer theory, Part III: proof of exactness}, preprint. M. Marcolli, B.L. Wang, {\em Exact triangles in Seiberg-Witten Floer theory, Part IV: $\Z$--graded monopole homology}, to appear in Asian Journal of Mathematics. J.W. Morgan, {\em The Seiberg-Witten equations and applications to the topology of smooth four-manifolds}, Princeton University Press, 1996. J.W. Morgan, T.S. Mrowka and D. Ruberman, {\em The $L^2$-moduli space and a vanishing theorem for Donaldson polynomial Invariants,} Monographs in Geometry and Topology, Vol 2, 1994. J.W. Morgan, Z. Szabo and C.H. Taubes, {\em A product formula for the Seiberg-Witten invariants and the generalized Thom Conjecture}, J. Differential Geom. 44 (1996), no. 4, 706--788. M. Schwarz, {\em Morse Homology}, Birkh\"auser 1993. K.K. Uhlenbeck, {\em Connections with $L\sp{p}$ bounds on the curvature}, Comm. Math. Phys. 83 (1982), no. 1, 31--42.