Article:Math.DG/9907080/unidentified-references

From Knot Atlas
Jump to navigationJump to search
 

 M.F. Atiyah, V.K. Patodi, I.M. Singer, {\em Spectral         asymmetry and Riemannian geometry, I},         Math. Proc. Camb. Phil. Soc.77 (1975), 43-69. 

  P.J. Braam, S.K.  Donaldson, {\em Floer's work on          instanton homology, knots and surgery}, Floer Memorial Volume,          Progress in Mathematics, Vol. 133;  Birkh\"auser 1995. 

 S.E. Cappell, R. Lee, E.Y. Miller,          {\em Self-adjoint elliptic operators and manifold             decompositions. I:             Low eigenmodes and stretching}, Commun. Pure Appl. Math. 49,             No.8, (1996) 825-866.  

 A. Carey, M. Marcolli, B.L. Wang, {\em Exact triangles          in Seiberg-Witten Floer theory, Part I: the geometric triangle},          preprint.  

 S. Dostoglou, D. Salamon, {\em Self-dual instantons and              holomorphic curves}, Ann. of Math. 139 (1994) 581-640.  

 R. Fintushel, R. Stern, {\em Integer graded instanton             homology groups for homology              three-spheres}, Topology 31 (1992), no. 3, 589--604. 

 A. Floer {\em An Instanton-Invariant for 3-Manifolds},           Commun. Math. Phys. 118 (1988), 215-240. 

 D. Freed, K. Uhlenbeck, {\em Instantons and 4-manifolds},            MSRI Lecture notes, Springer-Verlag, 1984. 

 P. Hartman, {\em Ordinary differential equations},          Birkh\"auser 1982.  

 R.B. Lockhard, R.C. Mc Owen {\em Elliptic operators on       non-compact manifolds}, Ann. Sc. Norm. Sup. Pisa, IV-12 (1985),       409-446. 

 M. Marcolli, B.L. Wang, {\em Equivariant Seiberg-Witten           Floer homology}, preprint. 

 M. Marcolli, B.L. Wang, {\em Exact triangles          in Seiberg-Witten Floer theory, Part III: proof of          exactness}, preprint. 

 M. Marcolli, B.L. Wang, {\em Exact triangles          in Seiberg-Witten Floer theory, Part IV: $\Z$--graded          monopole homology}, to appear in Asian Journal of Mathematics.    

 J.W. Morgan, {\em The Seiberg-Witten equations and         applications to the topology of smooth four-manifolds}, Princeton         University Press, 1996. 

 J.W. Morgan, T.S. Mrowka and D. Ruberman,      {\em The $L^2$-moduli space and a vanishing theorem for Donaldson        polynomial Invariants,} Monographs in Geometry and Topology,        Vol 2,  1994. 

 J.W. Morgan, Z. Szabo and C.H. Taubes, {\em A product          formula for the Seiberg-Witten invariants and the          generalized Thom Conjecture}, J. Differential Geom. 44          (1996), no. 4, 706--788. 

 M. Schwarz, {\em Morse Homology}, Birkh\"auser 1993.  

 K.K. Uhlenbeck, {\em Connections with $L\sp{p}$ bounds          on the curvature}, Comm. Math. Phys. 83 (1982), no. 1, 31--42.