Article:Math.DG/9907107/unidentified-references
From Knot Atlas
Jump to navigationJump to search
R.~Abraham, J.~E. Marsden, and T.~Ratiu, {\em Manifolds, tensor analysis, and applications}, second ed., Springer, New York, 1988.
R.~A. Adams, {\em Sobolev spaces}, Academic Press, Orlando, FL, 1975.
S.~Agmon, A.~Douglis, and L.~Nirenberg, {\em Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. {I}}, Comm. Pure Appl. Math. {\bf 12} (1959), 623--727.
\bysame, {\em Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. {II}}, Comm. Pure Appl. Math. {\bf 17} (1964), 35--92.
M.~F. Atiyah, V.~K. Patodi, and I.~M. Singer, {\em Spectral asymmetry in {R}iemannian geometry. {I}}, Math. Proc. Cambridge Phil. Soc. {\bf 77} (1975), 43--69.
T.~Aubin, {\em Nonlinear analysis on complex manifolds. {M}onge-{A}mp{\`e}re equations}, Springer, New York, 1982.
S.~E. Cappell, R.~Lee, and E.~Y. Miller, {\em Self-adjoint elliptic operators and manifold decompositions. {I}. {L}ow eigenmodes and stretching}, Comm. Pure Appl. Math. {\bf 49} (1996), 825--866.
I.~Chavel, {\em Eigenvalues in {R}iemannian geometry}, Academic Press, New York, 1984.
S.~K. Donaldson, {\em An application of gauge theory to four-dimensional topology}, J. Differential Geom. {\bf 18} (1983), 279--315.
\bysame, {\em Connections, cohomology and the intersection forms of four manifolds}, J. Differential Geom. {\bf 24} (1986), 275--341.
\bysame, {\em Polynomial invariants for smooth four-manifolds}, Topology {\bf 29} (1990), 257--315.
S.~K. Donaldson and P.~B. Kronheimer, {\em The geometry of four-manifolds}, Oxford Univ. Press, Oxford, 1990.
S.~K. Donaldson and D.~P. Sullivan, {\em Quasi-conformal four-manifolds}, Acta Math. {\bf 163} (1990), 181--252.
P.~M.~N. Feehan, Lecture at the conference on Geometry, Analysis and Mathematical Physics, Obernai, France, June 1999.
\bysame, Lecture at the Four-Manifolds Workshop, Mathematische Forschungsinstitut, Oberwolfach, Germany, May 1996.
\bysame, {\em Geometry of the ends of the moduli space of anti-self-dual connections}, J. Differential Geom. {\bf 42} (1995), 465--553.
\bysame, {\em Links of degree-one reducible {PU(2)} monopoles}, in preparation.
\bysame, {\em {N}on-{A}belian monopoles and the relation between {D}onaldson and {S}eiberg-{W}itten invariants of smooth four-manifolds}, unpublished manuscript, 210 pages, February 1996.
\bysame, {\em {PU(2)} monopoles and links of top-level {S}eiberg-{W}itten moduli spaces}, preprint (sections 1--3 of \cite{FL2}).
\bysame, {\em {PU(2)} monopoles. {II}: {T}op-level {S}eiberg-{W}itten moduli spaces and a special case of {W}itten's conjecture}, preprint (sections 4--7 of \cite{FL2}).
\bysame, {\em {PU(2)} monopoles. {IV}: {S}urjectivity of gluing maps}, in preparation.
\bysame, {\em {PU(2)} monopoles. {V}: {I}ntersection theory}, in preparation.
R.~Fintushel and R.~Stern, {\em Immersed spheres in 4-manifolds and the immersed {T}hom conjecture}, Turkish J. Math. {\bf 19} (1995), 145--157.
G.~B. Folland, {\em Introduction to partial differential equations}, second ed., Princeton Univ. Press, Princeton, NJ, 1995.
D.~Freed and K.~K. Uhlenbeck, {\em Instantons and four-manifolds}, 2nd ed., Springer, New York, 1991.
R.~Friedman and J.~W. Morgan, {\em Smooth four-manifolds and complex surfaces}, Springer, Berlin, 1994.
D.~Gilbarg and N.~Trudinger, {\em Elliptic partial differential equations of second order}, second ed., Springer, New York, 1983.
P.~B. Gilkey, {\em Invariance theory, the heat equation, and the {A}tiyah-{S}inger index theorem}, second ed., Publish or Perish, Wilmington, DE, 1984.
D.~Groisser and T.~H. Parker, {\em Sharp decay estimates for {Y}ang-{M}ills fields}, Comm. Anal. Geom. {\bf 5} (1997), 439--474.
L.~H{\"o}rmander, {\em The analysis of linear partial differential operators}, vol. {I-IV}, Springer, New York, 1983.
S.~Kobayashi, {\em Differential geometry of complex vector bundles}, Princeton Univ. Press, Princeton, NJ, 1987.
D.~Kotschick, {\em {SO(3)} invariants for four-manifolds with {$b^+=1$}}, Proc. London Math. Soc. {\bf 63} (1991), 426--448.
D.~Kotschick and J.~W. Morgan, {\em {SO(3)} invariants for four-manifolds with {$b^+=1$}, {II}}, J. Differential Geom. {\bf 39} (1994), 433--456.
P.~B. Kronheimer and T.~S. Mrowka, {\em The structure of {D}onaldson's invariants for four-manifolds not of simple type}, unpublished manuscript, April 1994, http://www.math.harvard.edu.
\bysame, {\em Embedded surfaces and the structure of {D}onaldson's polynomial invariants}, J. Differential Geom. {\bf 43} (1995), 573--734.
H.~B. Lawson and M-L. Michelsohn, {\em Spin geometry}, Princeton Univ. Press, Princeton, NJ, 1988.
J.~W. Morgan and T.~S. Mrowka, {\em A note on {D}onaldson's polynomial invariants}, Internat. Math. Res. Notes {\bf 10} (1992), 223--230.
J.~W. Morgan, Z.~Szab{\'o}, and C.~H. Taubes, {\em A product formula for the {S}eiberg-{W}itten invariants and the generalized {T}hom conjecture}, J. Differential Geom. {\bf 44} (1996), 706--788.
C.~B. Morrey, {\em Multiple integrals in the calculus of variations}, Springer-Verlag, New York, 1966, Die Grundlehren der mathematischen Wissenschaften, Band 130.
T.~S. Mrowka, {\em Marston {M}orse memorial lectures}, Institute for Advanced Study, Princeton, NJ, April, 1999.
\bysame, {\em Local {M}ayer-{V}ietoris principle for {Y}ang-{M}ills moduli spaces}, {Ph.D}. thesis, Harvard University, Cambridge, MA, 1988.
V.~Y. Pidstrigatch, Lectures at the {N}ewton {I}nstitute in {D}ecember 1994, {O}berwolfach in {M}ay 1996, and the {N}ewton {I}nstitute in {N}ovember 1996.
J.~R{\aa }de, {\em Decay estimates for {Y}ang-{M}ills fields: Two simplified proofs}, Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA 1992), Publish or Perish, Houston, TX, 1993, pp.~91--105.
D.~Salamon, {\em Spin geometry and {S}eiberg-{W}itten invariants}, Birkh{\"a}user, Boston, to appear.
E.~Stein, {\em Singular integral operators and differentiability properties of functions}, Princeton Univ. Press, Princeton, NJ, 1970.
C.~H. Taubes, {\em Self-dual {Y}ang-{M}ills connections on non-self-dual 4-manifolds}, J. Differential Geom. {\bf 17} (1982), 139--170.
\bysame, {\em Path-connected {Y}ang-{M}ills moduli spaces}, J. Differential Geometry {\bf 19} (1984), 337--392.
\bysame, {\em Self-dual connections on 4-manifolds with indefinite intersection matrix}, J. Differential Geom. {\bf 19} (1984), 517--560.
\bysame, {\em A framework for {M}orse theory for the {Y}ang-{M}ills functional}, Invent. Math. {\bf 94} (1988), 327--402.
\bysame, {\em The stable topology of self-dual moduli spaces}, J. Differential Geom. {\bf 29} (1989), 162--230.
\bysame, {\em The existence of anti-self-dual conformal structures}, J. Differential Geometry {\bf 36} (1992), 163--253.
K.~K. Uhlenbeck, {\em Connections with {$L^p$} bounds on curvature}, Comm. Math. Phys. {\bf 83} (1982), 31--42.
\bysame, {\em Removable singularities in {Y}ang-{M}ills fields}, Comm. Math. Phys. {\bf 83} (1982), 11--29.
\bysame, {\em The {C}hern classes of {S}obolev connections}, Comm. Math. Phys. {\bf 101} (1985), 449--457.
E.~Witten, Lecture at the Newton Institute, Cambridge, UK, December, 1994.