Article:Math.DG/9909126/unidentified-references

From Knot Atlas
Jump to navigationJump to search
 

 Aspinwall, P.S., Greene, B.R., Morrison, D.R., {\em The Monomial-Divisor Mirror Map}, Inter. Math. Res. Notices 12 (1993), 319-337. % 

 Aspinwall, P.S., Greene, B.R., Morrison, D.R., ``Topological change in mirror symmetry", {\it Nucl. Phys.} B446 (1994), 414-480. % 

 Batyrev,V.~V. {\em Variations of the mixed {H}odge structure of affine hypersurfaces in algebraic tori}, Duke Math. J. {\bf 69} (1993), 349--409. % 

 Batyrev, V.~V. {\em Dual polyhedra and mirror symmetry for {C}alabi-{Y}au   hypersurfaces in toric varieties}, J. Algebraic Geom. {\bf 3} (1994),   493--535. % 

 Candelas, P., de la Ossa, X.C., Green, P., Parkes, L., {\em A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory}, in {\it Essays on Mirror Symmetry}, edited by S.-T. Yau. % 

 Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., {\em Discriminants, Resultants and Multidimensional Determinants}, Birkhauser Inc., Boston, MA, 1994. % 

 Green, B.R., Plesser, M.R., {\em Duality in Calabi-Yau manioflds}, Nuclear Phys. B {\bf 338} (1990), 15-37. % 

 Greene, B. and Yau, S.-T.,  (eds.), {Mirror Symmetry {II}}, International Press, Cambridge, 1996. % 


 Guillemin, V., {\em \k Structures on Toric Varieties},  J. Differential Geometry 40 (1994), 285-309. % 

 Harvey, R. and Lawson, H.B., {\em Calibrated Geometries}, Acta Math. 148 (1982), 47-157. % 

 Hitchin, N., {\em The Moduli Space of Special Lagrangian Submanifolds}, dg-ga 9711002 % 

 D.~Joyce, {\em Singularities of special Lagrangian fibrations and the SYZ Conjecture}, dg-ga 0011179. % 

 Leung, N., Vafa, C., {\em Branes and Toric Geometry}, {\it Nucl. Phys.} B484 (1997), 562-582, hep-th 9711013. % 

 Mikhalkin, G., {\em Real algebraic curves, the moment map and amoebas}, {\it Ann. of Math.} 151 (2000), 309-326. % 

 Oda, T., {\em Convex Bodies and Algebraic Geometry}, Springer-Verlag, 1985. % 

 Roan, S.-S., {\em The Mirror of \cy Orbifolds}, Int. J. of Math., Vol 2, no. 4, (1991), 439-455. % 

 Ruan, W.-D., {\em Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces I: Fermat type quintic case}, in {\it Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds}, edited by Yau and Vafa, AMS and International Press, 2001.  % 

 Ruan, W.-D., {\em Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces II: Technical results on gradient flow construction}, Journal of Differential Geometry, Volume 63 (2003), 171--229. % 

 Ruan, W.-D., {\em Newton polygon, string diagram and toric variety}, Math.DG/0011012. % 

 Ruan, W.-D., {\em Lagrangian torus fibration and mirror symmetry of Calabi-Yau hypersurfaces in toric variety}, Math.DG/0007028. % 

 Ruan, W.-D., {\em Lagrangian torus fibration and mirror symmetry of Calabi-Yau complete intersections in toric variety}, preliminary version. % 

 Ruan, W.-D., {\em Smoothing of Lagrangian fibration map}, in preparation. % 

 Ruan, W.-D., {\em Monodromy near the large complex limit and horizontal sections of the Lagrangian torus fibration of Calabi-Yau hypersurface in toric variety}, in preparation. % 

 Strominger, A.,Yau, S.-T. and Zaslow, E, {\em Mirror Symmetry is T-duality}, Nuclear Physics B 479 (1996),243-259. % 

 Yau, S.-T.  (eds.), {Essays on Mirror Manifolds}, International Press, 1992. %  

 Zharkov, I., {\em Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry}, alg-geom 9806091