Article:Math.GT/0004007/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 Atiyah, Patodi and Singer:  Spectral asymmetry and Riemanian geometry I, II, III {\it Math. Proc. Camb. Phil. Soc.} 1975  

 A. J. Casson and C. McA. Gordon:   Cobordism of classical knots {\it Progress in Mathmatics } 62, 1975  

 A. J. Casson and C. McA. Gordon:   On slice knots in dimension three {\it Proceedings of Symposia in Pure Mathematics} 32, 1978  

  T.D.Cochran and K. E. Orr:  Not all links are concordant to boundary links  {\it Ann. of Math.}, 138, 519--554, 1993.   

 P.M.Gilmer and C.Livingston:  The Casson-Gordon invariant and link concordance {\it Topology} 31, 475-492, 1992  

 P.E.Conner and Floyd:   Differentiable periodic maps  {\it Ergebnisse der Mathematik} 33, 1964  

 M.S.Farber:   Duality in an infinite cyclic covering and even dimensional knot  {\it Math. USSR Izv } 11,  749-782, 1978  

 M. Kervaire:     Les noeudes de dimensions sup\'ereures  {\it  Bull.Soc.Math.Fr.   } 93,  225-271,  1965   

   Kirby: The topology of 4-manifolds  {\it Lecture Notes in Math 1374 (Springer Verlag) } 1989   

 J. Levine:    Polynomial invariants of knots of codimension two  {\it  Ann. of Math.} 84,  537-554,  1966   

 J. Levine:  Knot modules I  {\it Trans. Amer. Math. Soc.} 229,  1-50,  1977  

 J. Levine:  Link invariants via the eta-invariant {\it  Comment. Math. Helveticii} 69,  82-119, 1994  

 E. Ogasa:   Ribbon moves of 2-links preserve the $\mu$-invariants of 2-links  {\it University of Tokyo Preprint series, UTMS 97-35} 1997    

  Rolfsen: Knots and links {\it Publish or Perish, Inc.  } 1976  

 D. Ruberman:   Doubly slice knots and the Casson-Gordon invariants  {\it  Trans. Amer. Math. Soc. } 279, 569-588, 1983    

 D. Ruberman:  The Casson-Gordon invariants in high-dimensional knot theory     {\it  Trans. Amer. Math. Soc. } 306, 579-595, 1988     

 Steenrod: Topology of Fiber bundles  {\it Ann. of Math. Studies 50 Princeton Univ. Press } 1951   %Akbulut, Selman; Kirby, Robion Mazur manifolds.  %Michigan Math. J. 26 (1979), no. 3, 259--284