Article:Math.GT/0205138/unidentified-references
From Knot Atlas
Jump to navigationJump to search
{Be} J. Berge, The knots in $D^2\times S^1$ which have non-trivial Dehn surgery that yield $D^2\times S^1$. {\it Topology Appl.} \textbf{38} (1991), 1--19. {Bi1} J. S. Birman, On braid groups. {\it Comm. Pure Appl. Math.} \textbf{21} (1968), 41--72. {Bi3} J. S. Birman, Mapping class groups and their relationship to braid groups. {\it Comm. Pure Appl. Math.} \textbf{22} (1969), 213--238. {BZ} G. Burde and H. Zieschang, {\it Knots.} De Gruyter Studies in Mathemathics, \textbf{5}, Walter de Gruyter, 1985. {CM} A. Cattabriga and M. Mulazzani, Strongly-cyclic branched coverings of $(1,1)$-knots and cyclic presentation of groups. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{135} (2003), 137--146. {CK} D. H. Choi and K. H. Ko, Parametrizations of 1-bridge torus knots. {\it J. Knot Theory Ramifications} \textbf{12} (2003), 463--491. {Do} H. Doll, A generalized bridge number for links in 3-manifold. {\it Math. Ann.} \textbf{294} (1992), 701--717. H. Fujii, Geometric indices and the Alexander polynomial of a knot. {\it Proc. Am. Math. Soc.} \textbf{124} (1996), 2923--2933. {Ga} D. Gabai, Surgery on knots in solid tori. {\it Topology} \textbf{28} (1989), 1--6. {Ga2} D. Gabai, 1-bridge braids in solid tori. {\it Topology Appl.} \textbf{37} (1990), 221--235. {Ge} S. Gervais, A finite presentation of the mapping class group of a punctured surface. {\it Topology} \textbf{40} (2001), 703--725. {GM} L. Grasselli and M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds. {\it Forum Math.} \textbf{13} (2001), 379--397. {Ha} C. Hayashi, Genus one 1-bridge positions for the trivial knot and cabled knots. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{ 125} (1999), 53--65. {Ha2} C. Hayashi, Satellite knots in 1-genus 1-bridge positions. {\it Osaka J. Math.} \textbf{36} (1999), 711--729. {Ha3} C. Hayashi, 1-genus 1-bridge splittings for knots in the 3-sphere and lens spaces. Preprint. {KS} T. Kobayashi and O. Saeki, The Rubinstein-Scharlemann graphic of a $3$-manifold as the discriminant set of a stable map. {\it Pacific J. Math.} \textbf{195} (2000), 101--156. {LP} C. Labru\`{e}re and L. Paris, Presentations for the punctured mapping class groups in terms of Artin groups. {\it Algeb. Geom. Topol.} \textbf{1} (2001), 73--114. {MS} K. Morimoto and M. Sakuma, On unknotting tunnels for knots. {\it Math. Ann.} \textbf{289} (1991), 143--167. {MSY} K. Morimoto, M. Sakuma and Y. Yokota, Examples of tunnel number one knots which have the property '1+1=3'. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{119} (1996), 113--118. {MSY2} K. Morimoto, M. Sakuma and Y. Yokota, Identifying tunnel number one knots. {\it J. Math. Soc. Japan} \textbf{48} (1996), 667--688. {Mu} M. Mulazzani, Cyclic presentations of groups and cyclic branched coverings of $(1,1)$-knots. {\it Bull. Korean Math. Soc.} \textbf{40} (2003), 101--108. {PS} J. R. Parker and C. Series, The mapping class group of the twice punctured torus. To appear in {\it Proceedings of the conference ``Groups: Combinatorial and Geometric Aspects ''} (Bielefeld, 15 - 23 August 1999), London Mathematical Society Lecture Note Series. {W} B. Wajnryb, A simple presentation for the Mapping Class Group of an orientable surface. {\it Israel J. Math.} \textbf{45} (1983), 157--174. {W1} Y.-Q. Wu, Incompressibility of surfaces in surgered 3-manifolds. {\it Topology} \textbf{31} (1992), 271--279. {Wu} Y.-Q. Wu, $\partial$-reducing Dehn surgeries and $1$-bridge knots. {\it Math. Ann.} \textbf{295} (1993), 319--331. {W2} Y.-Q. Wu, Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebodies. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{120} (1996), 687--696.