Article:Math.GT/0205138/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 {Be} J. Berge, The knots in $D^2\times S^1$ which have non-trivial Dehn surgery that yield $D^2\times S^1$. {\it Topology Appl.} \textbf{38} (1991), 1--19.  

 {Bi1} J. S. Birman, On braid groups. {\it  Comm. Pure Appl. Math.} \textbf{21} (1968), 41--72.  

 {Bi3} J. S. Birman, Mapping class groups and their relationship to braid groups. {\it Comm. Pure Appl. Math.}  \textbf{22} (1969), 213--238.  

 {BZ} G. Burde and H. Zieschang, {\it Knots.} De Gruyter Studies in Mathemathics, \textbf{5}, Walter de Gruyter, 1985.  

 {CM} A. Cattabriga and M. Mulazzani, Strongly-cyclic branched coverings of $(1,1)$-knots and cyclic presentation of groups. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{135} (2003), 137--146.  

 {CK} D. H. Choi and K. H. Ko, Parametrizations of 1-bridge torus knots. {\it J. Knot Theory Ramifications} \textbf{12} (2003), 463--491.  

 {Do} H. Doll, A generalized bridge number for links in 3-manifold. {\it Math. Ann.} \textbf{294} (1992), 701--717.  

 H. Fujii, Geometric indices and the Alexander polynomial of a knot. {\it Proc. Am. Math. Soc.} \textbf{124} (1996),  2923--2933.  

 {Ga} D. Gabai, Surgery on knots in solid tori. {\it Topology} \textbf{28} (1989), 1--6.  

 {Ga2} D. Gabai, 1-bridge braids in solid tori. {\it Topology Appl.} \textbf{37} (1990), 221--235.  

 {Ge} S. Gervais, A finite presentation of the mapping class group of a punctured surface. {\it Topology} \textbf{40} (2001), 703--725.  

 {GM} L. Grasselli and M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds. {\it Forum Math.}  \textbf{13} (2001), 379--397.   

 {Ha} C. Hayashi, Genus one 1-bridge positions for the trivial knot and cabled knots. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{ 125} (1999), 53--65.  

 {Ha2} C. Hayashi, Satellite knots in 1-genus 1-bridge positions. {\it Osaka J. Math.} \textbf{36} (1999), 711--729.  

 {Ha3} C. Hayashi, 1-genus 1-bridge splittings for knots in the 3-sphere and lens spaces. Preprint.   

 {KS} T. Kobayashi and O. Saeki, The Rubinstein-Scharlemann graphic of a $3$-manifold as the discriminant set of a stable map. {\it Pacific J. Math.} \textbf{195} (2000), 101--156.  

 {LP} C. Labru\`{e}re and L. Paris, Presentations for the punctured mapping class groups in terms of Artin groups. {\it Algeb. Geom. Topol.} \textbf{1} (2001), 73--114.  

 {MS} K. Morimoto and M. Sakuma, On unknotting tunnels for knots. {\it Math. Ann.} \textbf{289} (1991), 143--167.  

 {MSY} K. Morimoto, M. Sakuma and Y. Yokota, Examples of tunnel number one knots which have the property '1+1=3'. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{119} (1996), 113--118.  

 {MSY2} K. Morimoto, M. Sakuma and Y. Yokota, Identifying tunnel number one knots. {\it J. Math. Soc. Japan} \textbf{48} (1996), 667--688.  

 {Mu} M. Mulazzani, Cyclic presentations of groups and cyclic branched coverings of $(1,1)$-knots. {\it Bull. Korean Math. Soc.} \textbf{40} (2003), 101--108.  

 {PS} J. R. Parker and C. Series, The mapping class group of the twice punctured torus. To appear in {\it Proceedings of the conference ``Groups: Combinatorial and Geometric Aspects ''} (Bielefeld, 15 - 23 August 1999), London Mathematical Society Lecture Note Series.  

 {W} B. Wajnryb, A simple presentation for the Mapping Class Group of an orientable surface. {\it Israel J. Math.} \textbf{45} (1983), 157--174.  

 {W1} Y.-Q. Wu, Incompressibility of surfaces in surgered 3-manifolds. {\it Topology}  \textbf{31} (1992), 271--279.  

 {Wu} Y.-Q. Wu, $\partial$-reducing Dehn surgeries and $1$-bridge knots. {\it Math. Ann.}  \textbf{295} (1993), 319--331.  

 {W2} Y.-Q. Wu, Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebodies. {\it Math. Proc. Cambridge Philos. Soc.} \textbf{120} (1996), 687--696.