Article:Math.GT/0301149/unidentified-references
From Knot Atlas
Jump to navigationJump to search
\textbf{J\,O Berge}, \emph{Some knots with surgeries giving lens spaces}, unpublished man\-uscript \textbf{M Boileau}, \textbf{C Weber}, \emph{Le probl{\`e}me de {J}. {M}ilnor sur le nombre gordien des noeuds alg{\'e}briques}, Enseign. Math. 30 (1984) 173--222 \textbf{S\,K Donaldson}, \textbf{P\,B Kronheimer}, \emph{The Geometry of Four-Manifolds}, Oxford Mathematical Monographs, Oxford University Press (1990) \textbf{C\,A Giller}, \emph{A family of links and the {C}onway calculus}, Trans. Amer. Math. Soc. 270 (1982) 75--109 \textbf{C\,McA Gordon}, \textbf{R\,A Litherland}, \textbf{K Murasugi}, \emph{Signatures of covering links}, Canad. J. Math. 33 (1981) 381--394 \textbf{L\,H Kauffman}, \emph{Formal knot theory}, Mathematical Notes 30, Princeton University Press (1983) \textbf{T Kawamura}, \emph{The unknotting numbers of {$10\sb {139}$} and {$10\sb {152}$} are {$4$}}, Osaka J. Math. 35 (1998) 539--546 \textbf{P\,B Kronheimer}, \textbf{T\,S Mrowka}, \emph{Gauge theory for embedded surfaces. {I}}, Topology 32 (1993) 773--826 \textbf{J\,W Milnor}, \emph{Singular points of complex hypersurfaces}, Annals of Mathematics Studies 61, Princeton University Press (1968) \textbf{B Owens}, \textbf{S Strle}, \emph{Rational homology spheres and four-ball genus} (2003), preprint \textbf{P\,S Ozsv{\'a}th}, \textbf{Z Szab{\'o}}, \emph{The symplectic {T}hom conjecture}, Ann. of Math. 151 (2000) 93--124 \textbf{P\,S Ozsv{\'a}th}, \textbf{Z Szab{\'o}}, \emph{Absolutely graded {F}loer homologies and intersection forms for four-manifolds with boundary}, Adv. Math. 173 (2003) 179--261 \textbf{J\,A Rasmussen}, \emph{Floer homologies of surgeries on two-bridge knots}, Algebr. Geom. Topol. 2 (2002) 757--589 \textbf{J\,A Rasmussen}, \emph{Floer homology and knot complements}, Ph.D. thesis, Harvard University (2003) \textbf{D Rolfsen}, \emph{Knots and links}, Mathematics Lecture Series 7, Publish or Perish, Inc. (1976) \textbf{L Rudolph}, \emph{Qusipositivity as an obstruction to sliceness}, Bull. Amer. Math. Soc. (N.S.) 29 (1993) 51--59 \textbf{T Tanaka}, \emph{Unknotting numbers of quasipositive knots}, Topology Appl. 88 (1998) 239--246 \textbf{S Wolfram}, \emph{The Mathematica$\sp ®$ book. Fourth edition.}, Wolfram Media, Inc. (1999)