Article:Math.GT/0310164/unidentified-references
From Knot Atlas
Jump to navigationJump to search
J.~O. Berge. \newblock Some knots with surgeries giving lens spaces. \newblock Unpublished manuscript. J.~O. Berge. \newblock The knots in {$D\sp 2\times S\sp 1$} which have nontrivial {D}ehn surgeries that yield {$D\sp 2\times S\sp 1$}. \newblock {\em Topology Appl.}, 38(1):1--19, 1991. S.~A. Bleiler and C.~D. Hodgson. \newblock Spherical space forms and {D}ehn filling. \newblock {\em Topology}, 35(3):809--833, 1996. S.~A. Bleiler and R.~A. Litherland. \newblock Lens spaces and {D}ehn surgery. \newblock {\em Proc. Amer. Math. Soc.}, 107(4):1127--1131, 1989. P.~Braam and S.~K. Donaldson. \newblock Floer's work on instanton homology, knots, and surgery. \newblock In H.~Hofer, C.~H. Taubes, A.~Weinstein, and E.~Zehnder, editors, {\em The Floer Memorial Volume}, number 133 in Progress in Mathematics, pages 195--256. Birkh{\"a}user, 1995. D.~Calegari and N.~M. Dunfield. \newblock Laminations and groups of homeomorphisms of the circle. \newblock {\em Invent. Math.}, 152(1):149--204, 2003. M.~Culler, C.~McA. Gordon, J.~Luecke, and P.~B. Shalen. \newblock Dehn surgery on knots. \newblock {\em Ann. of Math}, 125(2):237--300, 1987. S.~K. Donaldson and P.~B. Kronheimer. \newblock {\em The geometry of four-manifolds}. \newblock Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1990. \newblock Oxford Science Publications. Y.~M. Eliashberg and W.~P. Thurston. \newblock {\em Confoliations}. \newblock Number~13 in University Lecture Series. American Mathematical Society, 1998. R.~Fintushel and R.~J. Stern. \newblock Constructing lens spaces by surgery on knots. \newblock {\em Math. Z.}, 175(1):33--51, 1980. A.~Floer. \newblock Instanton homology and {D}ehn surgery. \newblock In H.~Hofer, C.~H. Taubes, A.~Weinstein, and E.~Zehnder, editors, {\em The Floer Memorial Volume}, number 133 in Progress in Mathematics, pages 77--97. Birkh{\"a}user, 1995. Andreas Floer. \newblock An instanton-invariant for {$3$}-manifolds. \newblock {\em Comm. Math. Phys.}, 118(2):215--240, 1988. K.~A. Fr{\o}yshov. \newblock The {S}eiberg-{W}itten equations and four-manifolds with boundary. \newblock {\em Math. Res. Lett}, 3:373--390, 1996. D.~Gabai. \newblock Foliations and the topology of {$3$}-manifolds. \newblock {\em J. Differential Geom.}, 18(3):445--503, 1983. D.~Gabai. \newblock Foliations and the topology of {$3$}-manifolds {III}. \newblock {\em J. Differential Geom.}, 26(3):479--536, 1987. D.~Gabai. \newblock Surgery on knots in solid tori. \newblock {\em Topology}, 28(1):1--6, 1989. H.~Goda and M.~Teragaito. \newblock Dehn surgeries on knots which yield lens spaces and genera of knots. \newblock {\em Math. Proc. Cambridge Philos. Soc.}, 129(3):501--515, 2000. C.~McA. Gordon. \newblock {\em Some aspects of classical knot theory}, pages pp. 1--60. \newblock Number 685 in Lecture Notes in Math. Springer-Verlag, 1978. C.~McA. Gordon. \newblock Dehn surgery on knots. \newblock In {\em Proceedings of the {I}nternational {C}ongress of {M}athematicians Vol. {I} ({K}yoto, 1990)}, pages 631--642. Springer-Verlag, 1991. C.~McA. Gordon and J.~Luecke. \newblock Knots are determined by their complements. \newblock {\em J. Amer. Math. Soc.}, 2(2):371--415, 1989. C.~McA. Gordon and J.~Luecke. \newblock Knots are determined by their complements. \newblock {\em Bull. Amer. Math. Soc. (N.S.)}, 20(1):83--87, 1989. P.~B. Kronheimer and T.~S. Mrowka. \newblock Floer homology for {S}eiberg-{W}itten {M}onopoles. \newblock In preparation. P.~B. Kronheimer and T.~S. Mrowka. \newblock Gauge theory for embedded surfaces. {I}. \newblock {\em Topology}, 32(4):773--826, 1993. P.~B. Kronheimer and T.~S. Mrowka. \newblock Monopoles and contact structures. \newblock {\em Invent. Math.}, 130(2):209--255, 1997. W.~B.~R. Lickorish. \newblock {\em An introduction to knot theory}. \newblock Number 175 in Graduate Texts in Mathematics. Springer-Verlag, 199. G.~Meng and C.~H. Taubes. \newblock {\underline{SW}}={M}ilnor torsion. \newblock {\em Math. Research Letters}, 3:661--674, 1996. T.~S. Mrowka, P.~S. Ozsv{\'a}th, and B.~Yu. \newblock Seiberg-{W}itten monopoles on {S}eifert fibered spaces. \newblock {\em Comm. Anal. Geom.}, 5(4):685--791, 1997. P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Absolutely graded {F}loer homologies and intersection forms for four-manifolds with boundary. \newblock {\em Advances in Mathematics}, 173(2):179--261, 2003. P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock On the {F}loer homology of plumbed three-manifolds. \newblock {\em Geom. Topol.}, 7:185--224, 2003. J.~Rasmussen. \newblock {\em Floer homology and knot complements}. \newblock PhD thesis, Harvard University, 2003. R.~Roberts. \newblock Taut foliations in punctured surface bundles. {I}. \newblock {\em Proc. London Math. Soc. (3)}, 82(3):747--768, 2001. R.~Roberts. \newblock Taut foliations in punctured surface bundles. {II}. \newblock {\em Proc. London Math. Soc. (3)}, 83(2):443--471, 2001. R.~Roberts, J.~Shareshian, and M.~Stein. \newblock Infinitely many hyperbolic {$3$}-manifolds which contain no {R}eebless foliation. \newblock {\em J. Amer. Math. Soc.}, 16(3):639--679, 2003. W.~P. Thurston. \newblock The geometry and topology of {$3$}-manifolds. \newblock Lecture notes, Princeton University, 1977. W.~P. Thurston. \newblock Three-dimensional manifolds, {K}leinian groups and hyperbolic geometry. \newblock {\em Bull. Amer. Math. Soc. (N.S.)}, 6(3):357--381, 1982. S.~C. Wang. \newblock Cyclic surgery on knots. \newblock {\em Proc. Amer. Math. Soc.}, 107(4):1091--1094, 1989. Y.~Q. Wu. \newblock Cyclic surgery and satellite knots. \newblock {\em Topology Appl.}, 36(3):205--208, 1990.