Article:Math.GT/0311036/unidentified-references
From Knot Atlas
Jump to navigationJump to search
{\bf S Akbulut}, {\bf R Matveyev}, {\it Exotic structures and adjunction inequality}, Turkish J. Math. {21} (1997) 47--53 {\bf A Kawamura}, {\it The unknotting numbers of $10_{139}$ and $10_{152}$ are 4}, Osaka J. Math. {\bf 35} (1998) 539--546 {\bf A Kawauchi}, {\it A survey of knot theory}, Birkh\"auser--Verlag, Basel (1996) {\bf P Kronheimer}, {\bf T Mrowka}, {\it Gauge theory for embedded surfaces. I}, Topology {32} (1993) 773--826 {\bf C Livingston}, {\it Splitting the concordance group of algebraically slice knots},\break \gtrefl 7{2003}{18}{641}{643} {\bf P Ozsv\'ath}, {\bf Z Szab\'o}, {\it Knot Floer homology and the four--ball genus}, Geometry\break \href{http://www.maths.warwick.ac.uk/gt/GTVol7/paper17.abs.html}{and Topology 7 (2003) 615--639} {\bf J\,A Rasmussen}, {\it Knot Floer homology, genus bounds, and mutation } (2003), PhD~thesis, Harvard University (2003) {\bf J\,A Rasmussen}, {\it Floer homologies of surgeries on two--bridge knots}, Algebraic \href{http://www.maths.warwick.ac.uk/agt/AGTVol2/agt-2-32.abs.html} {and Geometric Topology 2 (2003) 757--789} {\bf D Rolfsen}, {\it Knots and links}, Mathematics Lecture Series, 7. Publish or Perish, Inc., Houston, TX (1990) {\bf L Rudolph}, {\it Quasipositivity as an obstruction to sliceness}, Bull. Amer. Math. Soc. 29 (1993) 51--59 {\bf L Rudolph}, {\it An obstruction to sliceness via contact geometry and `classical' gauge theory}, Inv. Math. 119 (1995) 155--163 {\bf L Rudolph}, {\it Quasipositive pretzels}, Top. Appl. {115} (2001) 115--123 {\bf T Shibuya}, {\it Local moves and 4--genus of knots}, Memoirs of the Osaka Institute of Technology, Series A {45} (2000) 1--10 {\bf T Tanaka}, {\it Unknotting numbers of quasipositive knots}, Top. Appl. {88} (1998) 239--246