Article:Math.GT/9911085/unidentified-references
From Knot Atlas
Jump to navigationJump to search
S.\ Bleiler and C.\ Hodgson, `Spherical space forms and Dehn filling,' {\em Topology} {\bf 35} (1996) 809-833. S.\ Bleiler and M.\ Scharlemann, `A projective plane in $\R^4$ with three critical points is standard. Strongly invertible knots have property P.' {\em Topology} {\bf 27} (1988) 519-540. L.\ Ben Abdelghani and S.\ Boyer, `A calculation of the Culler-Shalen seminorms associated to small Seifert Dehn fillings.' {\em Proc.\ London Math.\ Soc.} {\bf 83} (2001) 235-256. S.\ Boyer, T.\ Mattman and X.\ Zhang, `The fundamental polygons of twist knots and the (-2,3,7) pretzel knot', {\em Knots '96 Proceedings,} World Scientific (1997) 159-172. S.\ Boyer and A.\ Nicas, `Varieties of group representations and Casson's invariant for rational homology $3$-spheres,' {\em Trans.\ Amer.\ Math.\ Soc.} {\bf 322} (1990) 507-522. S.\ Boyer and X.\ Zhang, `Finite Dehn surgery on knots,' {\em J.\ Amer.\ Math.\ Soc.} {\bf 9} (1996) 1005-1050. \bysame, `A proof of the finite filling conjecture,' (submitted). G.\ Burde and H.\ Zieschang, {\em Knots,} de Gruyter (1985). D.\ Cooper, M.\ Culler, H.\ Gillet, D.D.\ Long and P.B.\ Shalen, `Plane curves associated to character varieties of 3-manifolds', {\em Invent.\ Math.} {\bf 118} (1994), 47-84. M.\ Culler, C.M.\ Gordon, J.\ Luecke and P.B.\ Shalen, `Dehn surgery on knots', {\em Ann.\ of Math.} {\bf 125} (1987) 237-300. M.\ Culler and P.\ Shalen, `Varieties of group representations and splittings of 3-manifolds', {\em Ann.\ of Math.} {\bf 117} (1983) 109-146. \bysame, `Bounded, separating surfaces in knot manifolds', {\em Invent.\ Math.} {\bf 75} (1984) 537-545. J.C.\ Dean, {\em Hyperbolic knots with small Seifert-fibered Dehn surgeries}, PhD Thesis, The University of Texas at Austin, Austin (1996). C.\ Delman, `Constructing Essential Laminations and Taut Foliations Which Survive All Dehn Surgeries,' (preprint). R.\ Fintushel and R.\ Stern, `Constructing lens spaces by surgery on knots,'{\em Math.\ Z} {\bf 175} (1980) 33-51. C.D.\ Frohman and E.P.\ Klassen, `Deforming representations of knot groups in $\mbox{SU}(2)$,' {\em Comment.\ Math.\ Helvetici.} {\bf 66} (1991) 340-361. D.\ Gabai, `Foliations and the topology of $3$-manifolds. III,' {\em J. Diff. Geo.} {\bf 26} (1987) 479-536. W.\ Goldman, `The symplectic nature of fundamental groups of surfaces,'{\em Advances in Math.} {\bf 54} (1984) 200-225. E.\ Hironaka, `The Lehmer polynomial and pretzel links,' (to appear in {\em Bulletin of Can.\ Math.\ Soc.}). A.E.\ Hatcher and U.\ Oertel, `Boundary slopes for Montesinos knots,' {\em Topology} {\bf 28} (1989) 453-480. E.P.\ Klassen, `Representations of knot groups in $SU(2)$,' {\em Trans. A.M.S.} {\bf 326(2)} (1991) 795-828. N.\ Maruyama, `On Dehn surgery along a certain family of knots,' {\em J. of Tsuda College} {\bf 19} (1987) 261-280. T.\ Mattman, `The Culler-Shalen seminorms of pretzel knots,' PhD Thesis, McGill University, Montreal (2000) available at http://www.csuchico.edu/math/mattman J.W.\ Milnor, `Infinite cyclic coverings,' {\em Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967)} Prindle, Weber \& Schmidt (1968) 115-133. J.M.\ Montesinos, `Rev\^etements ramifi\'es de noeuds, espaces fibr\'es de Seifert et scindements de Heegaard,' {\em Orsay Lecture Notes} (1976). U.\ Oertel, `Closed incompressible surfaces in complements of star links,' {\em Pac.\ J.\ Math.} {\bf 111} (1984) 209-230. J.\ Porti, `Torsion de Reidemeister pour les vari\'et\'es hyperboliques,' {\em Mem.\ Amer.\ math.\ Soc.} {\bf 128} (1997). R.\ Riley `Parabolic representations of knot groups I,' {\em Proc.\ London Math.\ Soc.\ (3)} {\bf 24} (1972) 217-242. D.\ Rolfsen, {\em Knots and Links} 2nd Edition, Publish or Perish (1990). J.\ Rotman, {\em An Introduction to Homological Algebra}, Academic Press (1979). I.\ Shafarevich, {\em Basic Algebraic Geometry,} Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York 1974. P.\ Shanahan, `Cyclic Dehn surgery and the $A$-polynomial,' {\em Topology Appl.} {\bf 108} (2000) 7--36. D.\ Tanguay, {\em Chirugies Finies et Noeuds Rationnels}, PhD Thesis, UQAM, Montreal, Canada (1995). H.F.\ Trotter, `Non-invertible knots exist,' {\em Topology} {\bf 2} (1964) 275-280. A.\ Weil, `Remarks on the cohomology of groups,' {\em Ann.\ of Math.} {\bf 80} (1964) 149-157.