Article:Math.QA/0002087/unidentified-references
From Knot Atlas
Jump to navigationJump to search
A. A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of $GL_n,$ \emph{ Duke Math J.} {\bf 61}, 2 (1990), 655-677. A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, {\it Journal of the AMS} {\bf 9}, 2 (1996), 473-527. J. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Category of $\mf{g}$-modules, \emph{Functional Anal. and Appl.} {\bf 10}, 2 (1976), 87-92. J. N. Bernstein, S. I. Gelfand, Tensor products of finite and infinite dimensional representations of semisimple Lie algebras, \emph{Compositio Math.} {\bf 41}, (1980), 245-285. J. S. Carter, M. Saito, Reidemeister moves for surface isotopies and their interpretation as moves to movies, \emph{J. Knot Theory Ramifications} {\bf 2}, 3 (1993), 251-284. J. S. Carter, J. H. Rieger and M. Saito, A combinatorial description of knotted surfaces and their isotopies, \emph{Adv. Math.} {\bf 127}, 1 (1997), 1-51. L. Crane, I. B. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, \emph{J. Math. Phys.} {\bf 35}, (1994), 5136-5154. T. J. Enright, B. Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, \emph{Memoirs of the AMS} {\bf 367}, (1987). T. J. Enright, N. R. Wallach, Notes on homological algebra and representations of Lie algebras, \emph{Duke Math. Jour.} {\bf 47}, 1 (1980), 1-15. [Fi]{Fi} J. Fischer, 2-categories and 2-knots, \emph{Duke Math J.} {\bf 75}, 2 (1994), 493-526. [FK]{FK} I. B. Frenkel, M. Khovanov, Canonical bases in tensor products and graphical calculus for $U_q(\frak{sl}_2),$ \emph{Duke Math J.} {\bf 87}, 3 (1997), 409-480. [FKK]{FKK} I. B. Frenkel, M. Khovanov, A. Kirillov, Jr., Kazhdan-Lusztig polynomials and canonical basis, \emph{Transformation Groups} {\bf 3}, 4 (1998), 321-336. [FG]{FG} C. K. Fan, R. M. Green, Monomials and Temperley-Lieb algebras, \emph{J. Algebra} {\bf 190}, 2 (1997), 498-517. [Gr]{Gr} I. Grojnowski, The coproduct for quantum $GL_n$, preprint, (1992). [GrL]{GrL} I. Grojnowski, G. Lusztig, On bases of irreducible representations of quantum $GL_n$, in \emph{Kazhdan-Lusztig theory and related topics, Chicago, IL, 1989,} Contemp. Math. {\bf 139}, 167-174. [Ir]{Ir} R. S. Irving, Singular blocks of the category $\O,$ \emph{Math. Z.} {\bf 204}, (1990), 209-224. [J]{J} J. C. Jantzen, Moduln mit einem h\"{o}chsten Gewicht, \emph{Lect. Notes in Math.} {\bf 750}, 1979. [Jo]{Jo} V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, \emph{Bull. Amer. Math. Soc.} {\bf 12}, 1 (1985), 103-111. [Ka]{Ka} L. H. Kauffman, State models and the Jones polynomial, \emph{Topology} {\bf 26}, 3 (1987), 395-407. [KaL]{KaL} L. H. Kauffman, S. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-manifolds, \emph{Ann. of Math. Studies} {\bf 134}, Princeton U. Press, Princeton, 1994. [K]{K} M. Khovanov, Graphical calculus, canonical bases and Kazhdan-Lusztig theory, \emph{Thesis}, Yale University, (1997). [KV]{KV} A. W. Knapp, D. A. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton University Press, 1995. [LS]{LS} A. Lascoux, M.-P. Sch\"{u}tzenberger, Polynomes de Kazhdan \& Lusztig pour les grassmaniennes, \emph{ Ast\'{e}risque, } {\bf 87-88}, (1981) 249-266. [Lp]{Lp} J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, \emph{J. Algebra} {\bf 49}, 2 (1977), 496-511. G. Lusztig, Introduction to Quantum Groups, Birkh\"{a}user Boston, 1993. [MP]{MP} D. Mili\u{c}i\'{c}, P. Pand\u{z}i\'{c}, On degeneration of the spectral sequence for the composition of Zuckerman functors, \emph{ Glas. Mat. Ser. III} {\bf 32(52)}, 2 (1997), 179-199. [RC]{RC} A. Rocha-Caridi, Splitting criteria for $\mf{g}$-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite dimensional, irreducible $\mf{g}$-module, \emph{Trans. AMS} {\bf 262}, 2 (1980), 335-366. [RT]{RT} N. Yu. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, \emph{Comm. Math. Phys.} {\bf 127}, (1990), 1-26. V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, \emph{De Gruyter Studies in Mathematics} {\bf 18}, 1994. A. V. Zelevinski, Small resolutions of singularities of Schubert varieties, \emph{Funktional. Anal. and Appl.} {\bf 17}, (1983), 75-77. G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, \emph{Ann. of Math.} {\bf 106}, (1977), 295-308.