Article:Math.QA/0006056/unidentified-references
From Knot Atlas
Jump to navigationJump to search
V.~I. Arnol'd, \emph{Some remarks on symplectic monodromy of {M}ilnor fibrations}, The {F}loer Memorial Volume (H.~Hofer, C.~Taubes, A.~Weinstein, and E.~Zehnder, eds.), Progress in Mathematics, vol. 133, Birkh{\"a}user, 1995, pp.~99--104. A.~A. Beilinson, \emph{Coherent sheaves on {$\mathbb{P}^n$} and problems of linear algebra}, Funct. Anal. Appl. \textbf{12} (1978), 214--216. A.~Beilinson, V.Ginzburg and W.Soergel, \emph{Koszul duality patterns in representation theory}, Journal of the AMS \textbf{9}, n.2, (1996), 473--527. J.~Bernstein and S.~Gelfand, \emph{Tensor products of finite and infinite dimensional representations of semisimple Lie algebras}, Compositio Math. \textbf{41}, (1980), 245--285. J.~Birman, \emph{Braids, links and mapping class groups}, Annals of Math. Studies 82, Princeton University Press, 1974. J.~S. Birman and H.~M. Hilden, \emph{On isotopies of homeomorphisms of {R}iemann surfaces}, Annals of Math. \textbf{97} (1973), 424--439. E.~Brieskorn, \emph{{\"U}ber die {A}ufl{\"o}sung gewisser {S}ingularit{\"a}ten von holomorphen {A}bbildungen}, Math. Ann. \textbf{166} (1966), 76--102. Ya. Eliashberg, H.~Hofer, and D.~Salamon, \emph{Lagrangian intersections in contact geometry}, Geom. Funct. Anal. \textbf{5} (1995), 244--269. A.~Fathi, F.~Laudenbach, and V.~Po{\'e}naru, \emph{Travaux de {T}hurston sur les surfaces}, Ast{\'e}risque, vol. 66--67, Soc. Math. France, 1979. A.~Floer, \emph{Morse theory for {L}agrangian intersections}, J. Differential Geom. \textbf{28} (1988), 513--547. \bysame, \emph{A relative {M}orse index for the symplectic action}, Comm. Pure Appl. Math. \textbf{41} (1988), 393--407. \bysame, \emph{Witten's complex and infinite dimensional {M}orse theory}, J. Differential Geom. \textbf{30} (1989), 207--221. A.~Floer, H.~Hofer, and D.~Salamon, \emph{Transversality in elliptic {M}orse theory for the symplectic action}, Duke Math. J. \textbf{80} (1995), 251--292. K.~Fukaya, \emph{Morse homotopy, {$A_\infty$}-categories, and {F}loer homologies}, Proceedings of {GARC} workshop on Geometry and Topology (H.~J. Kim, ed.), Seoul National University, 1993. \bysame, \emph{Floer homology for three-manifolds with boundary {I}}, Preprint, 1997. S.~Gelfand, Yu.~Manin, \emph{Methods of homological algebra}, Springer-Verlag, Berlin, 1996. F.~M.~Goodman and H.~Wenzl, \emph{The Temperley-Lieb algebra at roots of unity,} Pacific J. Math. {\bf 161}, (1993), no.2, 307--334. A.~Haefliger, \emph{Plongements diff{\'e}rentiables des vari{\'e}t{\'e}s dans vari{\'e}t{\'e}s}, Comm. Math. Helv. \textbf{36} (1962), 47--82. H.~Hofer, \emph{Pseudoholomorphic curves in symplectizations with applications to the {W}einstein conjecture in dimension three}, Invent. Math. \textbf{114} (1993), 515--563. R.~S.~Irving, \emph{Projective modules in the category $\mathcal O$}, preprint, 1982. M.~Kontsevich, \emph{Homological algebra of mirror symmetry}, Proceedings of the International Congress of Mathematicians (Z{\"u}rich, 1994), Birkh{\"a}user, 1995, pp.~120--139. P.~Martin, \emph{Potts models and related problems in statistical mechanics,} Series on Advances in Statistical Mechanics, vol.5, 1991, World Scientific. D.~McDuff and D.~Salamon, \emph{Introduction to {S}ymplectic {T}opology}, Oxford University Press, 1995. J.~Moody, \emph{The {B}urau representation of the braid group ${B}_n$ is unfaithful for large $n$}, Bull. Amer. Math. Soc. \textbf{25} (1991), 379--384. Y.-G. Oh, \emph{Floer cohomology of {L}agrangian intersections and pseudo-holomorphic discs {I}}, Comm. Pure Appl. Math. \textbf{46} (1993), 949--994. \bysame, \emph{On the structure of pseudo-holomorphic discs with totally real boundary conditions}, J. Geom. Anal. \textbf{7} (1997), 305--327. \bysame, \emph{Floer theory for non-compact {L}agrangian submanifolds}, Preprint, 2000. M.~Po{\'z}niak, \emph{Floer homology, {N}ovikov rings and clean intersections}, Northern California Symplectic Geometry Seminar, 119--181, AMS Transl. Ser. 2, 196, AMS, Providence, RI, 1999. J.~Robbin and D.~Salamon, \emph{The {M}aslov index for paths}, Topology \textbf{32} (1993), 827--844. R.~Rouquier and A.~Zimmermann, \emph{{P}icard groups for derived module categories}, preprint, 1998, http://www.math.jussieu.fr/$\tilde{\hspace{0.05in}}$rouquier/. D.~Salamon, \emph{Morse theory, the {C}onley index, and {F}loer homology}, Bull. London Math. Soc. \textbf{22} (1990), 113--140. D.~Salamon and E.~Zehnder, \emph{Morse theory for periodic solutions of {H}amiltonian systems and the {M}aslov index}, Comm. Pure Appl. Math. \textbf{45} (1992), 1303--1360. V.~De Silva, \emph{Products in the symplectic {F}loer homology of {L}agrangian intersections}, Ph.D. thesis, Oxford University, 1998. C.~Viterbo, \emph{Intersection des sous-vari{\'e}t{\'e}s {L}agrangiennes, fonctionelles d'action et indice des syst{\`e}mes {H}amiltoniens}, Bull. Soc. Math. France \textbf{115} (1987), 361--390. A.~Weinstein, \emph{Lagrangian submanifolds and hamiltonian systems}, Annals of Math. \textbf{98} (1973), 377--410. B.W.Westbury, \emph{The representation theory of the Temperley-Lieb algebras,} Math. Z. {\bf 219}, (1995) no.4, 539-565.