Article:Math.QA/0202113/unidentified-references
From Knot Atlas
Jump to navigationJump to search
% {Bredon}G. E. Bredon, \textquotedblleft Topology and Geometry\textquotedblright. Springer-Verlag 1993. {BB}R. Brooks and R. F. Brown, A lower bound for the $\Delta$-Nielsen number, \textit{Trans. Amer. Math. Soc.} \textbf{143} (1969), 555--564. {Brown}R. F. Brown, \textquotedblleft The Lefschetz Fixed Point Theorem\textquotedblright. Scott-Foresman, Chicago 1971. {BS}R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary. \textit{Topology Appl.} \textbf{46} (1992), 65--79. {BRS}S. Buoncristiano, C. P. Rourke, and B. J. Sanderson, \textquotedblleft A geometric approach to homology theory\textquotedblright. London Mathematical Society Lecture Note Series, No. 18. Cambridge University Press, Cambridge-New York-Melbourne 1976. {CF}P. E. Conner and E. E. Floyd, \textquotedblleft Differentiable periodic maps\textquotedblright. Academic Press Inc., New York; Springer-Verlag, Berlin-G\"{o}ttingen-Heidelberg 1964. {Davis}J. F. Davis, P. Kirk, \textquotedblleft Lecture notes in algebraic topology\textquotedblright, Graduate Studies in Mathematics. 35. Providence, RI: American Mathematical Society, 2001. {Dim}D. Dimovski, One-parameter fixed point indices. \textit{Pacific J. Math.} \textbf{164} (1994), no. 2, 263--297. {DG}D. Dimovski and R. Geoghegan, One-parameter fixed point theory. \textit{Forum Math.} \textbf{2} (1990), no. 2, 125--154. {DK}R. Dobrenko and Z. Kucharski, On the generalization of the Nielsen number. \textit{Fund. Math.} \textbf{134} (1990), no. 1, 1--14. {Dold}A. Dold, \textquotedblleft Lectures on Algebraic Topology\textquotedblright. Springer-Verlag 1980. {Dold1}A. Dold, The fixed point transfer of fiber-preserving maps. \textit{Math. Z.} \textbf{148} (1976), 215-244. {Fuller}F. B. Fuller, The homotopy theory of coincidences. \textit{Ann. of Math.} (2) \textbf{59} (1954), 219--226. {GN}R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces. \textit{Amer. J. Math.} \textbf{116} (1994), no. 2, 397--446. {GNO}R. Geoghegan, A. Nicas and J. Oprea, Higher Lefschetz traces and spherical Euler characteristics, \textit{Trans. Amer. Math. Soc.} \textbf{348} (1996), 2039--2062. {GNS}R. Geoghegan, A. Nicas, and D. Sch\"{u}tz, Obstructions to homotopy invariance in parametrized fixed point theory. In: Geometry and Topology. Aarhus, Contemp. Math., Vol. \textbf{258} (2000) 351--369. {GJW}D. Gon\c{c}alves, J. Jezierski, and P. Wong, Obstruction theory and coincidences in positive codimension, preprint. {GW}D. L. Gon\c{c}alves and P. Wong, Nilmanifolds are Jiang-type spaces for coincidences. \textit{Forum Math.} \textbf{13} (2001), no. 1, 133--141. {HQ}A. Hatcher and F. Quinn, Bordism invariants of intersections of submanifolds. \textit{Trans. Amer. Math. Soc.} \textbf{200} (1974), 327--344. {Jez}J. Jezierski, One codimensional Wecken type theorems. \textit{Forum Math. }\textbf{5} (1993), no. 5, 421--439. {Jez-p}J. Jezierski, Personal communication. {Jon}E. A. Jonckheere, \textquotedblleft Algebraic and Differential Topology of Robust Stability\textquotedblright, Oxford University Press, 1997. {Jiang}B. Jiang, \textquotedblleft Lectures on Nielsen fixed point theory\textquotedblright. Contemporary Mathematics, 14, American Mathematical Society, Providence, R.I. 1983. {Kiang}T. H. Kiang, \textquotedblleft The theory of fixed point classes\textquotedblright. Springer-Verlag, Berlin, New York 1989. {Knill}R. J. Knill, On the homology of the fixed point set.\ \textit{Bull. Amer. Math. Soc.} \textbf{77} (1971), 184--190. {McCord}C. K. McCord, The three faces of Nielsen: coincidences, intersections and preimages. \textit{Topology Appl.} \textbf{103} (2000), no. 2, 155--177. {Mukh}K. Mukherjea, Coincidence theory for manifolds with boundary. Topology Appl. \textbf{46} (1992), 23-39. {Nij}H. Nijmeijer and A. van der Schaft, \textquotedblleft Nonlinear dynamical control systems\textquotedblright. New York, Springer-Verlag 1990. {RW}Y. Rong and S. Wang, The preimages of submanifolds, \textit{Math. Proc. Camb. Philos. Soc.} \textbf{112} (1992) 2, 271-279. {Sav}P. Saveliev, A Lefschetz-type coincidence theorem. \textit{Fund. Math.}, \textbf{162} (1999), 65--89. {Sav1}P. Saveliev, The Lefschetz coincidence theory for maps between spaces of different dimensions. \textit{Topology Appl.} \textbf{116} (2001) no. 1, 137-152. {Sav2}P. Saveliev, Removing coincidences of maps between manifolds of different dimensions. Submitted, \textit{preprint} available at saveliev.net/remov.pdf. {Stong}R. E. Stong, \textquotedblleft Notes on cobordism theory\textquotedblright. Mathematical Notes. Princeton University Press, Princeton, N.J. 1968. {Switzer}R. M. Switzer, \textquotedblleft Algebraic Topology - Homotopy and Homology\textquotedblright. Springer-Verlag, New York 1975. {Vick}J. W. Vick, \textquotedblleft Homology Theory, An Introduction to Algebraic Topology\textquotedblright. Springer-Verlag 1994. {Wong}P. Wong, Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds. \textit{J. Reine Angew. Math.} \textbf{524} (2000), 185--204.