Article:Math.QA/9908171/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 S.Akbulut, J.McCarthy, Casson's invariant for  oriented homology spheres -- an exposition, \emph{Princeton  mathematical notes 36,} Princeton University Press, 1990.   

 A.A.Beilinson, G.Lusztig and R.MacPherson,  A geometric setting for the quantum deformation of $GL_n,$ \emph{ Duke Math. Jour.,} v.61, is. 2, (1990), 655-677.  

  J.Bernstein, I.Frenkel and M.Khovanov,   A categorification of the Temperley-Lieb algebra and  Schur quotients of $U(\mf{sl}_2)$ by projective and Zuckerman functors,  to appear in \emph{Selecta Mathematica}.    

 J.S.Carter, M.Saito, Reidemeister moves for surface   isotopies and their interpretation as moves to movies,   \emph{J. of Knot Theory and its Ramifications,} v.2, n.3,   251--284, (1993).   

  L.Crane, I.B.Frenkel,  Four-dimensional topological quantum field theory, Hopf categories,  and the canonical bases, \emph{J. Math. Phys.,} v.35, n.10,   5136--5154, (1994).   

 [FK]{FK} I.B.Frenkel, M.Khovanov,  Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2),$ \emph{Duke Math. Jour.} v.87, (1997), 409-480.   

 [Fs]{Fs} J.Fischer, 2-categories and 2-knots, \emph{Duke Math. Jour.}  75, (1994), no.2, 493--526.   

 A.Floer, An instanton-invariant  for 3-manifolds, \emph{Comm. Math. Phys.} v.118,  no.2, 215--240, (1988).   %

  %S.Gelfand, Yu.I.Manin, Methods of homological algebra,  %Springer-Verlag, Berlin, 1996.    

 [GrL]{GrL} I.Grojnowski, G.Lusztig, On bases of irreducible  representations of quantum $GL_n$, in \emph{Kazhdan-Lusztig theory  and related topics (Chicago, IL, 1989),} 167-174, Contemp.Math., 139.   

 F.Jaeger, D.L.Vertigan and D.J.A.Welsh,  On the computational complexity of the Jones and Tutte polynomials, \emph{Math. Proc. Camb. Phil. Soc.,} v.108, 35--53, (1990).   

 [Jo]{Jo} V.F.R.Jones, A polynomial invariant for knots  via von Neumann algebras, \emph{Bull. Amer. Math. Soc.,} vol.12,  n.1, 103--111, (1985).   

  L.H.Kauffman, State models and the Jones polynomial,  \emph{Topology,} v.26, n.3, 395--407, (1987).   

 [K]{K} M.Khovanov, Graphical calculus, canonical bases and  Kazhdan-Lusztig theory, \emph{PhD Thesis}, Yale University, (1997).   

 W.B.R.Lickorish, M.B.Thistlethwaite, Some links with  nontrivial polynomials and their crossing-numbers,  \emph{Comment. Math. Helv.} 63, no.4, 527--539, (1988).   

 G.Lusztig, Introduction to Quantum Groups,  Birkhauser Boston,  1993.   

 H.Murakami, Quantum SU(2)-invariants dominate  Casson's SU(2)-invariant, \emph{Math. Proc. Cambridge Phil. Soc.,}  v.115, no.2, 253--281, (1994).   

   G.Meng, C.H.Taubes, SW=Milnor torsion, \emph{Math. Res. Lett.,}  v.3, 661--674, (1996).   

 M.B.Thistlethwaite, On the Kauffman polynomial of an   adequate link, \emph{Invent. Math.} 93, no.2, 285--296, (1988).