Article:Math.QA/9908171/unidentified-references
From Knot Atlas
Jump to navigationJump to search
S.Akbulut, J.McCarthy, Casson's invariant for oriented homology spheres -- an exposition, \emph{Princeton mathematical notes 36,} Princeton University Press, 1990.
A.A.Beilinson, G.Lusztig and R.MacPherson, A geometric setting for the quantum deformation of $GL_n,$ \emph{ Duke Math. Jour.,} v.61, is. 2, (1990), 655-677.
J.Bernstein, I.Frenkel and M.Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mf{sl}_2)$ by projective and Zuckerman functors, to appear in \emph{Selecta Mathematica}.
J.S.Carter, M.Saito, Reidemeister moves for surface isotopies and their interpretation as moves to movies, \emph{J. of Knot Theory and its Ramifications,} v.2, n.3, 251--284, (1993).
L.Crane, I.B.Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, \emph{J. Math. Phys.,} v.35, n.10, 5136--5154, (1994).
[FK]{FK} I.B.Frenkel, M.Khovanov, Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2),$ \emph{Duke Math. Jour.} v.87, (1997), 409-480.
[Fs]{Fs} J.Fischer, 2-categories and 2-knots, \emph{Duke Math. Jour.} 75, (1994), no.2, 493--526.
A.Floer, An instanton-invariant for 3-manifolds, \emph{Comm. Math. Phys.} v.118, no.2, 215--240, (1988). %
%S.Gelfand, Yu.I.Manin, Methods of homological algebra, %Springer-Verlag, Berlin, 1996.
[GrL]{GrL} I.Grojnowski, G.Lusztig, On bases of irreducible representations of quantum $GL_n$, in \emph{Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989),} 167-174, Contemp.Math., 139.
F.Jaeger, D.L.Vertigan and D.J.A.Welsh, On the computational complexity of the Jones and Tutte polynomials, \emph{Math. Proc. Camb. Phil. Soc.,} v.108, 35--53, (1990).
[Jo]{Jo} V.F.R.Jones, A polynomial invariant for knots via von Neumann algebras, \emph{Bull. Amer. Math. Soc.,} vol.12, n.1, 103--111, (1985).
L.H.Kauffman, State models and the Jones polynomial, \emph{Topology,} v.26, n.3, 395--407, (1987).
[K]{K} M.Khovanov, Graphical calculus, canonical bases and Kazhdan-Lusztig theory, \emph{PhD Thesis}, Yale University, (1997).
W.B.R.Lickorish, M.B.Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, \emph{Comment. Math. Helv.} 63, no.4, 527--539, (1988).
G.Lusztig, Introduction to Quantum Groups, Birkhauser Boston, 1993.
H.Murakami, Quantum SU(2)-invariants dominate Casson's SU(2)-invariant, \emph{Math. Proc. Cambridge Phil. Soc.,} v.115, no.2, 253--281, (1994).
G.Meng, C.H.Taubes, SW=Milnor torsion, \emph{Math. Res. Lett.,} v.3, 661--674, (1996).
M.B.Thistlethwaite, On the Kauffman polynomial of an adequate link, \emph{Invent. Math.} 93, no.2, 285--296, (1988).