Article:Math.RT/9906166/unidentified-references
From Knot Atlas
Jump to navigationJump to search
{abcd 99} % M.Auslander, I.Reiten and S.O.Smalo, %Representation theory of Artin algebras, {\it Cambridge studies in %advanced mathematics,} 36, 1995. S.Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n),$ \emph{J. Math. Kyoto Univ.} {\bf 36} (1996), no. 4, 789-808. S.Ariki, K.Koike, A Hecke algebra of $(\Z/r\Z) \wr \S_n$ and construction of its irreducible representations, \emph{Adv. Math.} {\bf 106} (1994), no.2, 216-243. J.N.Bernstein, I.M.Gelfand and S.I.Gelfand, Schubert cells and cohomology of the spaces $G/P,$ \emph{Russian Math. Surveys} {\bf 28} (1973), 1-26. L.Crane, I.B.Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, \emph{J. Math. Phys.} 35, (1994), 5136--5154. S.Fomin and R.P.Stanley, Schubert polynomials and the nilCoxeter algebra, \emph{Advances in Math.} {\bf 103}, (1994), 196-207. L.Geissinger, Hopf algebras of symmetric functions and class functions, in \emph{Combinatoire et repr\'{e}sentation du groupe sym\'{e}trique,} Lecture Notes in Math. {\bf 579}, (1977), 168-181. B.Kostant and S.Kumar, The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G,$ \emph{Advances in Math.} {\bf 62}, 3 (1986) 187-237. A.Lascoux and M.-P. Sch\"{u}tzenberger, Fonctorialit\'{e} des polyn\^{o}mes de Schubert, in \emph{Invariant Theory}, Contemporary Math. {\bf 88}, AMS (1989), 585-598. S.Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971. I.G.Macdonald, Notes on Schubert Polynomials, Publications du LCIM, vol 6, 1991. J.Rickard, Triangulated categories in the modular representation theory of finite groups, in \emph{Derived Equivalences for Group Rings,} by S.K\"{o}nig and A.Zimmermann, Lecture Notes in Math. {\bf 1685}, (1998), 177-198. % W.Soergel, Kategories $\O,$ perverse Garben und Moduln % uber den Koinvarianten zur Weylgruppe, {\it Journal of the AMS,} % v.3, n.2, 421--445, (1990). K.Yamagata, Frobenius algebras, in \emph{Handbook of Algebra} vol.1, (1996), 841-887. A.Zelevinsky, Representations of Finite Classical Groups, Lecture Notes in Math. {\bf 869}, (1981).