Article:Math.SG/0201049/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 D.~Auroux and L.~Katzarkov. \newblock The degree doubling formula for braid monodromies and {L}efschetz   pencils. \newblock Preprint, 2000.  

 S.~K. Donaldson. \newblock Irrationality and the {$h$}-cobordism conjecture. \newblock {\em J. Differential Geom.}, 26(1):141--168, 1987.  

 S.~K. Donaldson. \newblock Polynomial invariants for smooth four-manifolds. \newblock {\em Topology}, 29(3):257--315, 1990.  

 S.~K. Donaldson. \newblock Lefschetz pencils on symplectic manifolds. \newblock {\em J. Differential Geom.}, 53(2):205--236, 1999.  


 Y.~Eliashberg. \newblock Topological characterization of {S}tein manifolds of dimension   {$>2$}. \newblock {\em Internat. J. of Math.}, 1:29--46, 1990.  

 R.~Fintushel and R.~J. Stern. \newblock Immersed spheres in $4$-manifolds and the immersed {T}hom conjecture. \newblock {\em Turkish J. Math}, 19(2):145--157, 1995.  

 R.~Fintushel and R.~J. Stern. \newblock {\em Using {F}loer's exact triangle to compute {D}onaldson   invariants}, pages 435--444. \newblock Number 133 in Progr. Math. Birkh{\"a}user, 1995.  

 R.~E. Gompf and A.~I. Stipsicz. \newblock {\em {$4$}-manifolds and Kirby calculus}, volume~20 of {\em Graduate   Studies in Mathematics}. \newblock American Mathematical Society, 1999.  

 S.~P. Humphries. \newblock Generators for the mapping class group. \newblock In {\em Topology of low-dimensional manifolds (Proc. Second Sussex   Conf., Chelwood Gate, 1977)}, number 722 in Lecture Notes in Math., pages   44--47. Springer, 1979.  

 P.~B. Kronheimer and T.~S. Mrowka. \newblock The genus of embedded surfaces in the projective plane. \newblock {\em Math. Research Letters}, 1:797--808, 1994.  

 P.~B. Kronheimer and T.~S. Mrowka. \newblock Embedded surfaces and the structure of {D}onaldson's polynomial   invariants. \newblock {\em J. Differential Geometry}, pages 573--734, 1995.  

 P.~Lisca and G.~Mati{\'c}. \newblock Tight contact structures and the {S}eiberg-{W}itten invariants. \newblock {\em Invent. Math.}, 129(3):509--525, 1997.  

 J.~W. Morgan, Z.~Szab{\'o}, and C.~H. Taubes. \newblock A product formula for {S}eiberg-{W}itten invariants and the   generalized {T}hom conjecture. \newblock {\em J. Differential Geometry}, 44:706--788, 1996.  





 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock The symplectic {T}hom conjecture. \newblock {\em Ann. of Math.}, 151(1):93--124, 2000.  

 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Floer homology for three-manifolds bounding sphere plumbings. \newblock In perparation, 2001.  

 I.~Smith. \newblock Lefschetz pencils and divisors in moduli space. \newblock {\em Geom. Topol.}, 5:579--608, 2001.  

 C.~H. Taubes. \newblock The {S}eiberg-{W}itten invariants and symplectic forms. \newblock {\em Math. Research Letters}, 1(6):809--822, 1994.  

 C.~H. Taubes. \newblock More constraints on symplectic forms from {S}eiberg-{W}itten   invariants. \newblock {\em Math. Research Letters}, 2(1):9--13, 1995.  

 C.~H. Taubes. \newblock The geometry of the {S}eiberg-{W}itten invariants. \newblock In {\em Proceedings of the International Congress of Mathematicians,   Vol. II}, pages 493--504, 1998.