Article:Math.SG/9903049/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 V.~I. Arnol'd, \emph{Normal forms for functions near degenerate critical   points, the {W}eyl groups of {$A_k,D_k,E_k$} and {L}agrangian singularities},   Funct. Anal. Appl. \textbf{6} (1972), 254--272.  

 A.~Besse, \emph{Manifolds all of whose geodesics are closed}, Erg. der   Mathematik und ihrer Grenz\-gebiete, vol.~93, Springer, 1978.  

 E.~Brieskorn, \emph{Die {A}ufl{\"o}sung rationaler {S}ingularit{\"a}ten   holomorpher {A}bbildungen}, Math. Ann. \textbf{178} (1968), 255--270.  

 J.~Cerf, \emph{Sur les diff{\'e}omorphismes de la sph{\`e}re de dimension trois   {$(\Gamma_4 = 0)$}}, Lecture Notes in Math., vol.~53, Springer, 1968.  

 S.~Dostoglou and D.~Salamon, \emph{Self dual instantons and holomorphic   curves}, Annals of Math. \textbf{139} (1994), 581--640.  

 J.~Duistermaat, \emph{On the {M}orse index in variational calculus}, Advances   in Math. \textbf{21} (1976), 173--195.  

 A.~Floer, \emph{A relative {M}orse index for the symplectic action}, Comm. Pure   Appl. Math. \textbf{41} (1988), 393--407.  

 \bysame, \emph{Witten's complex and infinite dimensional {M}orse theory}, J.   Differential Geom. \textbf{30} (1989), 207--221.  

 A.~Haefliger, \emph{Plongements diff{\'e}rentiables des vari{\'e}t{\'e}s dans   vari{\'e}t{\'e}s}, Comm. Math. Helv. \textbf{36} (1962), 47--82.  

 \bysame, \emph{Knotted spheres and related geometric problems}, Proceedings of   the ICM, Moscow, 1966, pp.~437--445.  

 H.~Hofer and D.~Salamon, \emph{Floer homology and {N}ovikov rings}, The {F}loer   memorial volume (H.~Hofer, C.~Taubes, A.~Weinstein, and E.~Zehnder, eds.),   Progress in Mathematics, vol. 133, Birkh{\"a}user, 1995, pp.~483--524.  

 W.~Klingenberg, \emph{Riemannian geometry}, De Gruyter, 1982.  

 M.~Kontsevich, \emph{Homological algebra of mirror symmetry}, Proceedings of   the International Congress of Mathematicians (Z{\"u}rich, 1994),   Birkh{\"a}user, 1995, pp.~120--139.  

 D.~Kwon and Y.-G. Oh, \emph{Structure of the image of (pseudo)-holomorphic   discs with totally real boundary conditions}, Comm. Anal. Geom., to appear.  

 H.~B. Lawson and M.-L. Michelsohn, \emph{Spin geometry}, Princeton Univ. Press,   1989.  

 L.~Lazzarini, \emph{Existence of a somewhere injective pseudo-holomorphic   disc}, Preprint, December 1998.  

 D.~McDuff, \emph{Symplectic manifolds with contact type boundaries}, Invent.   Math. \textbf{103} (1991), 651--671.  

 J.~Milnor, \emph{Singular points of complex hypersurfaces}, Princeton Univ.   Press, 1968.  

 J.~Munkres, \emph{Differentiable isotopies of the $2$-sphere}, Notices of the   Amer. Math. Soc. \textbf{5} (1958), 582.  

 Y.-G. Oh, \emph{Floer cohomology of {L}agrangian intersections and   pseudo-holomorphic discs {I}}, Comm. Pure Appl. Math. \textbf{46} (1993),   949--994.  

 \bysame, \emph{Floer cohomology, spectral sequences, and the {M}aslov class of   {L}agrangian embeddings}, Int. Math. Res. Notices (1996), 305--346.  

 \bysame, \emph{On the structure of pseudo-holomorphic discs with totally real   boundary conditions}, J. Geom. Anal. \textbf{7} (1997), 305--327.  

 L.~Polterovich, \emph{Surgery of {L}agrange submanifolds}, Geom. Funct. Anal.   \textbf{1} (1991), 198--210.  

 M.~Po{\'z}niak, \emph{Floer homology, {N}ovikov rings and clean intersections},   Ph.D. thesis, University of Warwick, 1994.  

 J.~Robbin and D.~Salamon, \emph{The {M}aslov index for paths}, Topology   \textbf{32} (1993), 827--844.  

 \bysame, \emph{The spectral flow and the {M}aslov index}, Bull. London Math.   Soc. \textbf{27} (1995), 1--33.  

 D.~Salamon and E.~Zehnder, \emph{Morse theory for periodic solutions of   {H}amiltonian systems and the {M}aslov index}, Comm. Pure Appl. Math.   \textbf{45} (1992), 1303--1360.  

 P.~Seidel, \emph{Floer homology and the symplectic isotopy problem}, Ph.D.   thesis, Oxford University, 1997.  

 \bysame, \emph{$\pi_1$ of symplectic automorphism groups and invertibles in   quantum homology rings}, Geom. Funct. Anal. \textbf{7} (1997), 1046--1095.  

 \bysame, \emph{Lagrangian two-spheres can be symplectically knotted}, Preprint,   1998.  

 C.~Viterbo, \emph{Intersection des sous-vari{\'e}t{\'e}s {L}agrangiennes,   fonctionelles d'action et indice des syst{\`e}mes {H}amiltoniens}, Bull. Soc.   Math. France \textbf{115} (1987), 361--390.