Data
:
10 55/Integral Khovanov Homology
From Knot Atlas
Jump to navigation
Jump to search
dim
G
2
r
+
i
KH
Z
r
{\displaystyle \dim {\mathcal {G}}_{2r+i}\operatorname {KH} _{\mathbb {Z} }^{r}}
i
=
−
5
{\displaystyle i=-5}
i
=
−
3
{\displaystyle i=-3}
r
=
−
10
{\displaystyle r=-10}
Z
{\displaystyle {\mathbb {Z} }}
r
=
−
9
{\displaystyle r=-9}
Z
2
⊕
Z
2
{\displaystyle {\mathbb {Z} }^{2}\oplus {\mathbb {Z} }_{2}}
Z
{\displaystyle {\mathbb {Z} }}
r
=
−
8
{\displaystyle r=-8}
Z
3
⊕
Z
2
2
{\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}^{2}}
Z
2
{\displaystyle {\mathbb {Z} }^{2}}
r
=
−
7
{\displaystyle r=-7}
Z
5
⊕
Z
2
3
{\displaystyle {\mathbb {Z} }^{5}\oplus {\mathbb {Z} }_{2}^{3}}
Z
3
{\displaystyle {\mathbb {Z} }^{3}}
r
=
−
6
{\displaystyle r=-6}
Z
4
⊕
Z
2
5
{\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}^{5}}
Z
5
{\displaystyle {\mathbb {Z} }^{5}}
r
=
−
5
{\displaystyle r=-5}
Z
6
⊕
Z
2
4
{\displaystyle {\mathbb {Z} }^{6}\oplus {\mathbb {Z} }_{2}^{4}}
Z
4
{\displaystyle {\mathbb {Z} }^{4}}
r
=
−
4
{\displaystyle r=-4}
Z
4
⊕
Z
2
6
{\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}^{6}}
Z
6
{\displaystyle {\mathbb {Z} }^{6}}
r
=
−
3
{\displaystyle r=-3}
Z
3
⊕
Z
2
4
{\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}^{4}}
Z
4
{\displaystyle {\mathbb {Z} }^{4}}
r
=
−
2
{\displaystyle r=-2}
Z
2
⊕
Z
2
3
{\displaystyle {\mathbb {Z} }^{2}\oplus {\mathbb {Z} }_{2}^{3}}
Z
3
{\displaystyle {\mathbb {Z} }^{3}}
r
=
−
1
{\displaystyle r=-1}
Z
2
2
{\displaystyle {\mathbb {Z} }_{2}^{2}}
Z
2
{\displaystyle {\mathbb {Z} }^{2}}
r
=
0
{\displaystyle r=0}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
Navigation menu
Page actions
Data
Discussion
Read
View source
History
Page actions
Data
Discussion
More
Tools
Personal tools
Log in
Navigation
Main Page
To do list
Rolfsen Table
Hoste-Thistlethwaite Table (11 crossings)
Link Table
Torus Knots
KnotTheory` Manual
What's New?
Recent changes
Random page
Help
Search
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information