2 t ( 1 ) 4 − 3 t ( 1 ) 3 + 3 t ( 1 ) 2 − 3 t ( 1 ) + 2 ( t ( 1 ) − 1 ) t ( 1 ) 3 / 2 {\displaystyle {\frac {2t(1)^{4}-3t(1)^{3}+3t(1)^{2}-3t(1)+2}{(t(1)-1)t(1)^{3/2}}}}