Data
:
K11a366/Integral Khovanov Homology
From Knot Atlas
Jump to navigation
Jump to search
dim
G
2
r
+
i
KH
Z
r
{\displaystyle \dim {\mathcal {G}}_{2r+i}\operatorname {KH} _{\mathbb {Z} }^{r}}
i
=
3
{\displaystyle i=3}
i
=
5
{\displaystyle i=5}
r
=
0
{\displaystyle r=0}
Z
{\displaystyle {\mathbb {Z} }}
Z
{\displaystyle {\mathbb {Z} }}
r
=
1
{\displaystyle r=1}
Z
3
{\displaystyle {\mathbb {Z} }^{3}}
r
=
2
{\displaystyle r=2}
Z
4
⊕
Z
2
3
{\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}^{3}}
Z
3
{\displaystyle {\mathbb {Z} }^{3}}
r
=
3
{\displaystyle r=3}
Z
6
⊕
Z
2
4
{\displaystyle {\mathbb {Z} }^{6}\oplus {\mathbb {Z} }_{2}^{4}}
Z
4
{\displaystyle {\mathbb {Z} }^{4}}
r
=
4
{\displaystyle r=4}
Z
6
⊕
Z
2
6
{\displaystyle {\mathbb {Z} }^{6}\oplus {\mathbb {Z} }_{2}^{6}}
Z
6
{\displaystyle {\mathbb {Z} }^{6}}
r
=
5
{\displaystyle r=5}
Z
7
⊕
Z
2
6
{\displaystyle {\mathbb {Z} }^{7}\oplus {\mathbb {Z} }_{2}^{6}}
Z
6
{\displaystyle {\mathbb {Z} }^{6}}
r
=
6
{\displaystyle r=6}
Z
6
⊕
Z
2
7
{\displaystyle {\mathbb {Z} }^{6}\oplus {\mathbb {Z} }_{2}^{7}}
Z
7
{\displaystyle {\mathbb {Z} }^{7}}
r
=
7
{\displaystyle r=7}
Z
3
⊕
Z
2
6
{\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}^{6}}
Z
6
{\displaystyle {\mathbb {Z} }^{6}}
r
=
8
{\displaystyle r=8}
Z
4
⊕
Z
2
3
{\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}^{3}}
Z
3
{\displaystyle {\mathbb {Z} }^{3}}
r
=
9
{\displaystyle r=9}
Z
2
4
{\displaystyle {\mathbb {Z} }_{2}^{4}}
Z
4
{\displaystyle {\mathbb {Z} }^{4}}
r
=
10
{\displaystyle r=10}
Z
{\displaystyle {\mathbb {Z} }}
r
=
11
{\displaystyle r=11}
Z
2
{\displaystyle {\mathbb {Z} }_{2}}
Z
{\displaystyle {\mathbb {Z} }}
Navigation menu
Page actions
Data
Discussion
Read
View source
History
Page actions
Data
Discussion
More
Tools
Personal tools
Log in
Navigation
Main Page
To do list
Rolfsen Table
Hoste-Thistlethwaite Table (11 crossings)
Link Table
Torus Knots
KnotTheory` Manual
What's New?
Recent changes
Random page
Help
Search
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information