L10a106

From Knot Atlas
Jump to navigationJump to search

L10a105.gif

L10a105

L10a107.gif

L10a107

L10a106.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a106 at Knotilus!


Link Presentations

[edit Notes on L10a106's Link Presentations]

Planar diagram presentation X10,1,11,2 X18,11,19,12 X20,5,9,6 X14,7,15,8 X12,4,13,3 X16,14,17,13 X6,15,7,16 X8,9,1,10 X4,19,5,20 X2,18,3,17
Gauss code {1, -10, 5, -9, 3, -7, 4, -8}, {8, -1, 2, -5, 6, -4, 7, -6, 10, -2, 9, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a106 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(2)^3 t(1)^3-2 t(2)^2 t(1)^3+t(2) t(1)^3-3 t(2)^3 t(1)^2+7 t(2)^2 t(1)^2-5 t(2) t(1)^2+2 t(1)^2+2 t(2)^3 t(1)-5 t(2)^2 t(1)+7 t(2) t(1)-3 t(1)+t(2)^2-2 t(2)+1}{t(1)^{3/2} t(2)^{3/2}}} (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{13}{q^{9/2}}-\frac{14}{q^{7/2}}+\frac{13}{q^{5/2}}+q^{3/2}-\frac{11}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{6}{q^{13/2}}-\frac{11}{q^{11/2}}-4 \sqrt{q}+\frac{7}{\sqrt{q}}} (db)
Signature -3 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 \left(-z^3\right)-2 a^7 z+2 a^5 z^5+6 a^5 z^3+5 a^5 z+a^5 z^{-1} -a^3 z^7-4 a^3 z^5-6 a^3 z^3-5 a^3 z-a^3 z^{-1} +a z^5+2 a z^3} (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}+z^2 a^{10}-3 z^5 a^9+3 z^3 a^9-z a^9-5 z^6 a^8+4 z^4 a^8-z^2 a^8-7 z^7 a^7+10 z^5 a^7-8 z^3 a^7+z a^7-6 z^8 a^6+7 z^6 a^6-2 z^4 a^6-z^2 a^6-2 z^9 a^5-10 z^7 a^5+33 z^5 a^5-30 z^3 a^5+10 z a^5-a^5 z^{-1} -11 z^8 a^4+24 z^6 a^4-12 z^4 a^4+z^2 a^4+a^4-2 z^9 a^3-7 z^7 a^3+31 z^5 a^3-27 z^3 a^3+9 z a^3-a^3 z^{-1} -5 z^8 a^2+11 z^6 a^2-3 z^4 a^2-z^2 a^2-4 z^7 a+11 z^5 a-8 z^3 a+z a-z^6+2 z^4-z^2} (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
4          1-1
2         3 3
0        41 -3
-2       73  4
-4      75   -2
-6     76    1
-8    67     1
-10   57      -2
-12  27       5
-14 14        -3
-16 2         2
-181          -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-7} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a105.gif

L10a105

L10a107.gif

L10a107