L11a337
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a337's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X22,5,9,6 X14,3,15,4 X4,15,5,16 X16,7,17,8 X20,17,21,18 X18,11,19,12 X12,19,13,20 X2,9,3,10 X8,13,1,14 X6,21,7,22 |
| Gauss code | {1, -9, 3, -4, 2, -11, 5, -10}, {9, -1, 7, -8, 10, -3, 4, -5, 6, -7, 8, -6, 11, -2} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-t(1) t(2)^5-4 t(1)^2 t(2)^4+5 t(1) t(2)^4-t(2)^4-2 t(1)^3 t(2)^3+9 t(1)^2 t(2)^3-10 t(1) t(2)^3+2 t(2)^3+2 t(1)^3 t(2)^2-10 t(1)^2 t(2)^2+9 t(1) t(2)^2-2 t(2)^2-t(1)^3 t(2)+5 t(1)^2 t(2)-4 t(1) t(2)-t(1)^2}{t(1)^{3/2} t(2)^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{4}{q^{25/2}}+\frac{9}{q^{23/2}}-\frac{15}{q^{21/2}}+\frac{19}{q^{19/2}}-\frac{22}{q^{17/2}}+\frac{22}{q^{15/2}}-\frac{19}{q^{13/2}}+\frac{13}{q^{11/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^{13}-a^{13} z^{-1} +4 z^3 a^{11}+7 z a^{11}+3 a^{11} z^{-1} -3 z^5 a^9-7 z^3 a^9-5 z a^9-2 a^9 z^{-1} -3 z^5 a^7-7 z^3 a^7-4 z a^7-z^5 a^5-2 z^3 a^5-z a^5} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{16}+2 z^4 a^{16}-z^2 a^{16}-4 z^7 a^{15}+9 z^5 a^{15}-6 z^3 a^{15}+z a^{15}-7 z^8 a^{14}+15 z^6 a^{14}-8 z^4 a^{14}+2 z^2 a^{14}-a^{14}-6 z^9 a^{13}+6 z^7 a^{13}+8 z^5 a^{13}-6 z^3 a^{13}+a^{13} z^{-1} -2 z^{10} a^{12}-12 z^8 a^{12}+36 z^6 a^{12}-31 z^4 a^{12}+15 z^2 a^{12}-3 a^{12}-12 z^9 a^{11}+21 z^7 a^{11}-16 z^5 a^{11}+19 z^3 a^{11}-14 z a^{11}+3 a^{11} z^{-1} -2 z^{10} a^{10}-12 z^8 a^{10}+31 z^6 a^{10}-28 z^4 a^{10}+12 z^2 a^{10}-3 a^{10}-6 z^9 a^9+5 z^7 a^9-4 z^5 a^9+8 z^3 a^9-8 z a^9+2 a^9 z^{-1} -7 z^8 a^8+8 z^6 a^8-3 z^4 a^8-z^2 a^8-6 z^7 a^7+10 z^5 a^7-9 z^3 a^7+4 z a^7-3 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+2 z^3 a^5-z a^5} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



