# L11a522

 (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a522 at Knotilus!

 Planar diagram presentation X8192 X14,4,15,3 X16,5,17,6 X18,8,19,7 X12,20,7,19 X10,14,11,13 X22,10,13,9 X20,15,21,16 X6,17,1,18 X2,11,3,12 X4,22,5,21 Gauss code {1, -10, 2, -11, 3, -9}, {4, -1, 7, -6, 10, -5}, {6, -2, 8, -3, 9, -4, 5, -8, 11, -7}

### Polynomial invariants

 Multivariable Alexander Polynomial (in ${\displaystyle u}$, ${\displaystyle v}$, ${\displaystyle w}$, ...) ${\displaystyle {\frac {u^{2}v^{2}w^{3}-2u^{2}v^{2}w^{2}+u^{2}v^{2}w-2u^{2}vw^{3}+4u^{2}vw^{2}-3u^{2}vw+u^{2}v+u^{2}w^{3}-2u^{2}w^{2}+u^{2}w-uv^{2}w^{3}+3uv^{2}w^{2}-4uv^{2}w+uv^{2}+3uvw^{3}-8uvw^{2}+8uvw-3uv-uw^{3}+4uw^{2}-3uw+u-v^{2}w^{2}+2v^{2}w-v^{2}-vw^{3}+3vw^{2}-4vw+2v-w^{2}+2w-1}{uvw^{3/2}}}}$ (db) Jones polynomial ${\displaystyle q^{6}-4q^{5}+10q^{4}-15q^{3}+22q^{2}-24q+25-21q^{-1}+16q^{-2}-9q^{-3}+4q^{-4}-q^{-5}}$ (db) Signature 0 (db) HOMFLY-PT polynomial ${\displaystyle z^{4}a^{-4}+2z^{2}a^{-4}+a^{-4}z^{-2}+2a^{-4}-a^{2}z^{6}-2z^{6}a^{-2}-3a^{2}z^{4}-7z^{4}a^{-2}-3a^{2}z^{2}-9z^{2}a^{-2}-2a^{-2}z^{-2}-5a^{-2}+z^{8}+5z^{6}+10z^{4}+8z^{2}+z^{-2}+3}$ (db) Kauffman polynomial ${\displaystyle 3z^{10}a^{-2}+3z^{10}+9az^{9}+17z^{9}a^{-1}+8z^{9}a^{-3}+11a^{2}z^{8}+13z^{8}a^{-2}+8z^{8}a^{-4}+16z^{8}+8a^{3}z^{7}-10az^{7}-36z^{7}a^{-1}-14z^{7}a^{-3}+4z^{7}a^{-5}+4a^{4}z^{6}-19a^{2}z^{6}-52z^{6}a^{-2}-19z^{6}a^{-4}+z^{6}a^{-6}-55z^{6}+a^{5}z^{5}-11a^{3}z^{5}-2az^{5}+21z^{5}a^{-1}+3z^{5}a^{-3}-8z^{5}a^{-5}-5a^{4}z^{4}+15a^{2}z^{4}+62z^{4}a^{-2}+16z^{4}a^{-4}-2z^{4}a^{-6}+64z^{4}-a^{5}z^{3}+4a^{3}z^{3}+9az^{3}+5z^{3}a^{-1}+4z^{3}a^{-3}+3z^{3}a^{-5}+a^{4}z^{2}-7a^{2}z^{2}-37z^{2}a^{-2}-12z^{2}a^{-4}+z^{2}a^{-6}-32z^{2}-a^{3}z-3az-8za^{-1}-6za^{-3}+a^{2}+12a^{-2}+6a^{-4}+8+2a^{-1}z^{-1}+2a^{-3}z^{-1}-2a^{-2}z^{-2}-a^{-4}z^{-2}-z^{-2}}$ (db)

### Khovanov Homology

The coefficients of the monomials ${\displaystyle t^{r}q^{j}}$ are shown, along with their alternating sums ${\displaystyle \chi }$ (fixed ${\displaystyle j}$, alternation over ${\displaystyle r}$).
 \ r \ j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         71 6
7        94  -5
5       136   7
3      1210    -2
1     1312     1
-1    913      4
-3   712       -5
-5  310        7
-7 16         -5
-9 3          3
-111           -1
Integral Khovanov Homology
 ${\displaystyle \dim {\mathcal {G}}_{2r+i}\operatorname {KH} _{\mathbb {Z} }^{r}}$ ${\displaystyle i=-1}$ ${\displaystyle i=1}$ ${\displaystyle r=-5}$ ${\displaystyle {\mathbb {Z} }}$ ${\displaystyle r=-4}$ ${\displaystyle {\mathbb {Z} }^{3}\oplus {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }}$ ${\displaystyle r=-3}$ ${\displaystyle {\mathbb {Z} }^{6}\oplus {\mathbb {Z} }_{2}^{3}}$ ${\displaystyle {\mathbb {Z} }^{3}}$ ${\displaystyle r=-2}$ ${\displaystyle {\mathbb {Z} }^{10}\oplus {\mathbb {Z} }_{2}^{6}}$ ${\displaystyle {\mathbb {Z} }^{7}}$ ${\displaystyle r=-1}$ ${\displaystyle {\mathbb {Z} }^{12}\oplus {\mathbb {Z} }_{2}^{9}}$ ${\displaystyle {\mathbb {Z} }^{9}}$ ${\displaystyle r=0}$ ${\displaystyle {\mathbb {Z} }^{13}\oplus {\mathbb {Z} }_{2}^{12}}$ ${\displaystyle {\mathbb {Z} }^{13}}$ ${\displaystyle r=1}$ ${\displaystyle {\mathbb {Z} }^{12}\oplus {\mathbb {Z} }_{2}^{12}}$ ${\displaystyle {\mathbb {Z} }^{12}}$ ${\displaystyle r=2}$ ${\displaystyle {\mathbb {Z} }^{10}\oplus {\mathbb {Z} }_{2}^{12}}$ ${\displaystyle {\mathbb {Z} }^{13}}$ ${\displaystyle r=3}$ ${\displaystyle {\mathbb {Z} }^{6}\oplus {\mathbb {Z} }_{2}^{9}}$ ${\displaystyle {\mathbb {Z} }^{9}}$ ${\displaystyle r=4}$ ${\displaystyle {\mathbb {Z} }^{4}\oplus {\mathbb {Z} }_{2}^{6}}$ ${\displaystyle {\mathbb {Z} }^{7}}$ ${\displaystyle r=5}$ ${\displaystyle {\mathbb {Z} }\oplus {\mathbb {Z} }_{2}^{3}}$ ${\displaystyle {\mathbb {Z} }^{3}}$ ${\displaystyle r=6}$ ${\displaystyle {\mathbb {Z} }_{2}}$ ${\displaystyle {\mathbb {Z} }}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.