L11a56

From Knot Atlas
Jump to navigationJump to search

L11a55.gif

L11a55

L11a57.gif

L11a57

L11a56.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a56 at Knotilus!


Link Presentations

[edit Notes on L11a56's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X20,12,21,11 X22,18,5,17 X18,22,19,21 X8,16,9,15 X10,20,11,19 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -8, 4, -9, 5, -2, 11, -3, 8, -4, 6, -7, 9, -5, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a56 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23/2}-3 q^{21/2}+6 q^{19/2}-9 q^{17/2}+13 q^{15/2}-14 q^{13/2}+13 q^{11/2}-12 q^{9/2}+8 q^{7/2}-6 q^{5/2}+2 q^{3/2}-\sqrt{q}} (db)
Signature 5 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-9} +3 z^3 a^{-9} +2 z a^{-9} + a^{-9} z^{-1} -z^7 a^{-7} -4 z^5 a^{-7} -5 z^3 a^{-7} -3 z a^{-7} - a^{-7} z^{-1} -z^7 a^{-5} -4 z^5 a^{-5} -5 z^3 a^{-5} -4 z a^{-5} -2 a^{-5} z^{-1} +z^5 a^{-3} +4 z^3 a^{-3} +5 z a^{-3} +2 a^{-3} z^{-1} } (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -6 z^9 a^{-7} -4 z^9 a^{-9} -2 z^8 a^{-4} -3 z^8 a^{-6} -7 z^8 a^{-8} -6 z^8 a^{-10} -z^7 a^{-3} +3 z^7 a^{-5} +15 z^7 a^{-7} +5 z^7 a^{-9} -6 z^7 a^{-11} +7 z^6 a^{-4} +17 z^6 a^{-6} +25 z^6 a^{-8} +10 z^6 a^{-10} -5 z^6 a^{-12} +5 z^5 a^{-3} +9 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} +8 z^5 a^{-11} -3 z^5 a^{-13} -5 z^4 a^{-4} -15 z^4 a^{-6} -23 z^4 a^{-8} -6 z^4 a^{-10} +6 z^4 a^{-12} -z^4 a^{-14} -9 z^3 a^{-3} -16 z^3 a^{-5} -2 z^3 a^{-7} -3 z^3 a^{-9} -5 z^3 a^{-11} +3 z^3 a^{-13} -3 z^2 a^{-4} +4 z^2 a^{-6} +10 z^2 a^{-8} -z^2 a^{-10} -3 z^2 a^{-12} +z^2 a^{-14} +7 z a^{-3} +8 z a^{-5} +z a^{-11} +3 a^{-4} -3 a^{-8} + a^{-12} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-7} z^{-1} + a^{-9} z^{-1} } (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-10123456789χ
24           1-1
22          2 2
20         41 -3
18        52  3
16       84   -4
14      65    1
12     78     1
10    56      -1
8   37       4
6  35        -2
4 15         4
2 1          -1
01           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=9} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a55.gif

L11a55

L11a57.gif

L11a57