L11n167
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n167's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X11,19,12,18 X22,19,7,20 X20,15,21,16 X16,21,17,22 X17,13,18,12 X6718 X4,13,5,14 |
| Gauss code | {1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, -5, 9, 11, -4, 7, -8, -9, 5, 6, -7, 8, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1)^2 t(2)^4-t(1) t(2)^4-3 t(1)^2 t(2)^3+3 t(1) t(2)^3-t(2)^3+2 t(1)^2 t(2)^2-5 t(1) t(2)^2+2 t(2)^2-t(1)^2 t(2)+3 t(1) t(2)-3 t(2)-t(1)+1}{t(1) t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{8}{q^{11/2}}-\frac{9}{q^{13/2}}+\frac{9}{q^{15/2}}-\frac{8}{q^{17/2}}+\frac{5}{q^{19/2}}-\frac{3}{q^{21/2}}+\frac{1}{q^{23/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^9 \left(-z^5\right)-3 a^9 z^3-2 a^9 z+a^7 z^7+5 a^7 z^5+9 a^7 z^3+7 a^7 z+a^7 z^{-1} -2 a^5 z^5-8 a^5 z^3-8 a^5 z-a^5 z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{14}+z^2 a^{14}-3 z^5 a^{13}+4 z^3 a^{13}-z a^{13}-4 z^6 a^{12}+4 z^4 a^{12}-4 z^7 a^{11}+4 z^5 a^{11}-2 z a^{11}-3 z^8 a^{10}+4 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}-z^9 a^9-2 z^7 a^9+5 z^5 a^9-3 z^3 a^9-4 z^8 a^8+10 z^6 a^8-11 z^4 a^8+6 z^2 a^8-z^9 a^7+2 z^7 a^7-5 z^5 a^7+11 z^3 a^7-7 z a^7+a^7 z^{-1} -z^8 a^6+2 z^6 a^6-2 z^4 a^6+4 z^2 a^6-a^6-3 z^5 a^5+10 z^3 a^5-8 z a^5+a^5 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



