L11n322

From Knot Atlas
Jump to navigationJump to search

L11n321.gif

L11n321

L11n323.gif

L11n323

L11n322.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n322 at Knotilus!


Link Presentations

[edit Notes on L11n322's Link Presentations]

Planar diagram presentation X6172 X5,14,6,15 X8493 X2,16,3,15 X16,7,17,8 X9,18,10,19 X4,17,1,18 X19,13,20,22 X13,10,14,11 X21,5,22,12 X11,21,12,20
Gauss code {1, -4, 3, -7}, {-2, -1, 5, -3, -6, 9, -11, 10}, {-9, 2, 4, -5, 7, 6, -8, 11, -10, 8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n322 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
7         2-2
5        3 3
3       42 -2
1      73  4
-1     56   1
-3    65    1
-5   47     3
-7  24      -2
-9 14       3
-11 2        -2
-131         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n321.gif

L11n321

L11n323.gif

L11n323