L11n402
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n402's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X22,16,19,15 X20,8,21,7 X8,20,9,19 X13,18,14,5 X11,14,12,15 X17,12,18,13 X16,22,17,21 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {5, -4, 9, -3}, {10, -1, 4, -5, 11, -2, -7, 8, -6, 7, 3, -9, -8, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(w-1) \left(u v w^3-u v w^2+u v w-u v-2 u w^3+u w^2-u w-v w^3+v w^2-2 v w-w^4+w^3-w^2+w\right)}{\sqrt{u} \sqrt{v} w^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^{-6} +5 q^{-5} -8 q^{-4} +q^3+11 q^{-3} -2 q^2-10 q^{-2} +6 q+11 q^{-1} -8} (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^6 z^{-2} -a^6-z^4 a^4+z^2 a^4+4 a^4 z^{-2} +6 a^4+z^6 a^2+2 z^4 a^2-2 z^2 a^2-5 a^2 z^{-2} -7 a^2-2 z^4-4 z^2+2 z^{-2} +z^2 a^{-2} +2 a^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+4 a^4 z^8+7 a^2 z^8+3 z^8+4 a^5 z^7+8 a^3 z^7+6 a z^7+2 z^7 a^{-1} +a^6 z^6-9 a^4 z^6-19 a^2 z^6+z^6 a^{-2} -8 z^6-9 a^5 z^5-29 a^3 z^5-25 a z^5-5 z^5 a^{-1} +4 a^6 z^4+19 a^4 z^4+27 a^2 z^4-4 z^4 a^{-2} +8 z^4+3 a^7 z^3+20 a^5 z^3+43 a^3 z^3+28 a z^3+2 z^3 a^{-1} -4 a^6 z^2-24 a^4 z^2-34 a^2 z^2+5 z^2 a^{-2} -9 z^2-3 a^7 z-17 a^5 z-33 a^3 z-18 a z+z a^{-1} +3 a^6+16 a^4+21 a^2-2 a^{-2} +7+a^7 z^{-1} +5 a^5 z^{-1} +9 a^3 z^{-1} +5 a z^{-1} -a^6 z^{-2} -4 a^4 z^{-2} -5 a^2 z^{-2} -2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



