L11n436
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
Brunnian link |
Link Presentations
[edit Notes on L11n436's Link Presentations]
| Planar diagram presentation | X8192 X18,8,19,7 X5,16,6,17 X15,10,16,11 X3,15,4,14 X11,5,12,4 X2,20,3,19 X20,9,21,10 X13,7,14,12 X17,22,18,13 X6,21,1,22 |
| Gauss code | {1, -7, -5, 6, -3, -11}, {2, -1, 8, 4, -6, 9}, {-9, 5, -4, 3, -10, -2, 7, -8, 11, 10} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (v-1) (w-1) (w+1)^2}{\sqrt{u} \sqrt{v} w^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^4+2 q^3-q^2+2 q+1+ q^{-2} - q^{-3} +2 q^{-4} - q^{-5} } (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^2-z^4 a^{-2} -a^2 z^2-3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +z^6+5 z^4+5 z^2-2 z^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^5-3 a^5 z^3+2 a^4 z^6-8 a^4 z^4+4 a^4 z^2+a^3 z^7+z^7 a^{-3} -5 a^3 z^5-5 z^5 a^{-3} +4 a^3 z^3+5 z^3 a^{-3} +a^2 z^8+2 z^8 a^{-2} -6 a^2 z^6-12 z^6 a^{-2} +8 a^2 z^4+20 z^4 a^{-2} -4 a^2 z^2-12 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +a z^9+z^9 a^{-1} -5 a z^7-5 z^7 a^{-1} +2 a z^5+3 z^5 a^{-1} +6 a z^3+4 z^3 a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +3 z^8-20 z^6+36 z^4-20 z^2+2 z^{-2} +1} (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



