L11n438
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n438's Link Presentations]
| Planar diagram presentation | X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,15,8,14 X13,5,14,8 X19,13,20,22 X15,21,16,20 X21,17,22,16 X17,9,18,12 |
| Gauss code | {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 11}, {-7, 6, -9, 10, -11, 3, -8, 9, -10, 8} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(4)^3-t(1) t(2) t(4)^3+t(3) t(4)^3-t(4)^3-2 t(1) t(4)^2+3 t(1) t(2) t(4)^2-t(2) t(4)^2+t(1) t(3) t(4)^2-2 t(1) t(2) t(3) t(4)^2+2 t(2) t(3) t(4)^2-3 t(3) t(4)^2+2 t(4)^2+2 t(1) t(4)-3 t(1) t(2) t(4)+t(2) t(4)-t(1) t(3) t(4)+2 t(1) t(2) t(3) t(4)-2 t(2) t(3) t(4)+3 t(3) t(4)-2 t(4)+t(1) t(2)-t(1) t(2) t(3)+t(2) t(3)-t(3)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} t(4)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 11 q^{9/2}-13 q^{7/2}+6 q^{5/2}-4 q^{3/2}+q^{21/2}-2 q^{19/2}+6 q^{17/2}-10 q^{15/2}+12 q^{13/2}-15 q^{11/2} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -3 z^5 a^{-5} +4 z^3 a^{-3} -12 z^3 a^{-5} +6 z^3 a^{-7} +9 z a^{-3} -22 z a^{-5} +17 z a^{-7} -4 z a^{-9} +7 a^{-3} z^{-1} -20 a^{-5} z^{-1} +20 a^{-7} z^{-1} -8 a^{-9} z^{-1} + a^{-11} z^{-1} +2 a^{-3} z^{-3} -7 a^{-5} z^{-3} +9 a^{-7} z^{-3} -5 a^{-9} z^{-3} + a^{-11} z^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-12} -4 z^4 a^{-12} +6 z^2 a^{-12} + a^{-12} z^{-2} -4 a^{-12} +2 z^7 a^{-11} -5 z^5 a^{-11} +4 z^3 a^{-11} - a^{-11} z^{-3} -2 z a^{-11} +2 a^{-11} z^{-1} +2 z^8 a^{-10} +2 z^6 a^{-10} -21 z^4 a^{-10} +34 z^2 a^{-10} +7 a^{-10} z^{-2} -24 a^{-10} +z^9 a^{-9} +8 z^7 a^{-9} -25 z^5 a^{-9} +22 z^3 a^{-9} -5 a^{-9} z^{-3} -16 z a^{-9} +12 a^{-9} z^{-1} +7 z^8 a^{-8} -46 z^4 a^{-8} +75 z^2 a^{-8} +18 a^{-8} z^{-2} -58 a^{-8} +z^9 a^{-7} +16 z^7 a^{-7} -46 z^5 a^{-7} +50 z^3 a^{-7} -9 a^{-7} z^{-3} -37 z a^{-7} +24 a^{-7} z^{-1} +5 z^8 a^{-6} +5 z^6 a^{-6} -41 z^4 a^{-6} +73 z^2 a^{-6} +19 a^{-6} z^{-2} -60 a^{-6} +10 z^7 a^{-5} -26 z^5 a^{-5} +42 z^3 a^{-5} -7 a^{-5} z^{-3} -39 z a^{-5} +23 a^{-5} z^{-1} +6 z^6 a^{-4} -12 z^4 a^{-4} +26 z^2 a^{-4} +7 a^{-4} z^{-2} -23 a^{-4} +10 z^3 a^{-3} -2 a^{-3} z^{-3} -16 z a^{-3} +9 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



