L11n83
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n83's Link Presentations]
| Planar diagram presentation | X6172 X20,7,21,8 X4,21,1,22 X5,14,6,15 X10,4,11,3 X11,16,12,17 X15,12,16,13 X13,22,14,5 X18,9,19,10 X2,18,3,17 X8,19,9,20 |
| Gauss code | {1, -10, 5, -3}, {-4, -1, 2, -11, 9, -5, -6, 7, -8, 4, -7, 6, 10, -9, 11, -2, 3, 8} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 (t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{q}+\frac{2}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{8}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{8}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{17/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^9 z^{-1} -a^7 z^3+2 a^7 z^{-1} +a^5 z^5+2 a^5 z^3+a^5 z-a^5 z^{-1} +a^3 z^5+2 a^3 z^3+a^3 z+a^3 z^{-1} -a z^3-2 a z-a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 a^{10} z^4-8 a^{10} z^2+3 a^{10}+a^9 z^7-a^9 z^5-a^9 z^3+a^9 z-a^9 z^{-1} +2 a^8 z^8-8 a^8 z^6+19 a^8 z^4-20 a^8 z^2+7 a^8+a^7 z^9-a^7 z^7-a^7 z^5+5 a^7 z^3+2 a^7 z-2 a^7 z^{-1} +4 a^6 z^8-13 a^6 z^6+22 a^6 z^4-14 a^6 z^2+4 a^6+a^5 z^9-2 a^5 z^5+3 a^5 z^3+a^5 z-a^5 z^{-1} +2 a^4 z^8-3 a^4 z^6+2 a^4 z^4-2 a^4 z^2+2 a^3 z^7-a^3 z^5-6 a^3 z^3+3 a^3 z-a^3 z^{-1} +2 a^2 z^6-4 a^2 z^4+a^2+a z^5-3 a z^3+3 a z-a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



