L8a15
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a15 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^3_{3}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a15's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X16,12,9,11 X12,16,13,15 X2536 X4,9,1,10 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 3, -4}, {8, -2, 5, -6, 4, -3, 6, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u v w-2 u v-2 u w+2 u-2 v w+2 v+2 w-1}{\sqrt{u} \sqrt{v} \sqrt{w}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-7} - q^{-6} +4 q^{-5} -4 q^{-4} +6 q^{-3} -4 q^{-2} +q+4 q^{-1} -3} (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^8 z^{-2} -2 a^6 z^{-2} -3 a^6+3 a^4 z^2+a^4 z^{-2} +3 a^4-a^2 z^4-a^2 z^2+z^2} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8-3 z^2 a^8-a^8 z^{-2} +3 a^8+z^5 a^7-3 z a^7+2 a^7 z^{-1} +z^6 a^6+2 z^4 a^6-6 z^2 a^6-2 a^6 z^{-2} +5 a^6+z^7 a^5+2 z^3 a^5-3 z a^5+2 a^5 z^{-1} +4 z^6 a^4-5 z^4 a^4-a^4 z^{-2} +3 a^4+z^7 a^3+2 z^5 a^3-3 z^3 a^3+3 z^6 a^2-5 z^4 a^2+2 z^2 a^2+3 z^5 a-5 z^3 a+z^4-z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



