L9a31
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a31 is [math]\displaystyle{ 9^2_{39} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a31's Link Presentations]
| Planar diagram presentation | X8192 X16,9,17,10 X6718 X18,13,7,14 X10,4,11,3 X14,6,15,5 X4,12,5,11 X12,17,13,18 X2,16,3,15 |
| Gauss code | {1, -9, 5, -7, 6, -3}, {3, -1, 2, -5, 7, -8, 4, -6, 9, -2, 8, -4} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{\left(v^2-v+1\right) (u v-u+1) (u v-v+1)}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+3 q^{5/2}-6 q^{3/2}+7 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{9}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^5-3 a^3 z^3-3 a^3 z-a^3 z^{-1} +a z^7+5 a z^5-z^5 a^{-1} +9 a z^3-3 z^3 a^{-1} +7 a z-3 z a^{-1} +3 a z^{-1} -2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^6 z^4-a^6 z^2+3 a^5 z^5-3 a^5 z^3+5 a^4 z^6-7 a^4 z^4+4 a^4 z^2-a^4+5 a^3 z^7-8 a^3 z^5+z^5 a^{-3} +8 a^3 z^3-2 z^3 a^{-3} -4 a^3 z+z a^{-3} +a^3 z^{-1} +2 a^2 z^8+4 a^2 z^6+3 z^6 a^{-2} -12 a^2 z^4-6 z^4 a^{-2} +10 a^2 z^2+2 z^2 a^{-2} -3 a^2+9 a z^7+4 z^7 a^{-1} -20 a z^5-8 z^5 a^{-1} +18 a z^3+5 z^3 a^{-1} -9 a z-4 z a^{-1} +3 a z^{-1} +2 a^{-1} z^{-1} +2 z^8+2 z^6-10 z^4+7 z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



