L9a7
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a7 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{17}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a7's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,13,17,14 X14,7,15,8 X8,15,9,16 X18,11,5,12 X12,17,13,18 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 4, -5, 9, -2, 6, -7, 3, -4, 5, -3, 7, -6} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3 u v^2-4 u v+2 u+2 v^3-4 v^2+3 v}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{4}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{5}{q^{13/2}}-\frac{7}{q^{11/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{11} z^{-1} +3 a^9 z+2 a^9 z^{-1} -2 a^7 z^3-2 a^7 z-2 a^5 z^3-2 a^5 z-a^5 z^{-1} -a^3 z^3-a^3 z} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{12}+4 z^4 a^{12}-5 z^2 a^{12}+2 a^{12}-2 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -z^8 a^{10}-z^6 a^{10}+13 z^4 a^{10}-15 z^2 a^{10}+5 a^{10}-5 z^7 a^9+15 z^5 a^9-12 z^3 a^9+5 z a^9-2 a^9 z^{-1} -z^8 a^8-3 z^6 a^8+13 z^4 a^8-10 z^2 a^8+3 a^8-3 z^7 a^7+5 z^5 a^7-2 z^3 a^7-z a^7-3 z^6 a^6+2 z^4 a^6+z^2 a^6-a^6-3 z^5 a^5+3 z^3 a^5-3 z a^5+a^5 z^{-1} -2 z^4 a^4+z^2 a^4-z^3 a^3+z a^3} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



