5 1

From Knot Atlas
Revision as of 20:14, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

4 1.gif

4_1

5 2.gif

5_2

5 1.gif Visit 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 5 1's page at Knotilus!

Visit 5 1's page at the original Knot Atlas!

An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2).




A kolam of a 2x3 dot array
The VISA Interlink Logo [1]
Version of the US bicentennial emblem
A pentagonal table by Bob Mackay [2]
The Utah State Parks logo
As impossible object ("Penrose" pentagram)
Folded ribbon which is single-sided (more complex version of Möbius Strip).
Non-pentagonal shape.
Pentagram of circles.
Alternate pentagram of intersecting circles.
3D-looking rendition.
Partial view of US bicentennial logo on a shirt seen in Lisboa [3]
Non-prime knot with two 5_1 configurations on a closed loop.
Knotted epitrochoid
Sum of two 5_1s, Vienna, orthodox church

This sentence was last edited by Dror. Sometime later, Scott added this sentence.

Knot presentations

Planar diagram presentation X1627 X3849 X5,10,6,1 X7283 X9,4,10,5
Gauss code -1, 4, -2, 5, -3, 1, -4, 2, -5, 3
Dowker-Thistlethwaite code 6 8 10 2 4
Conway Notation [5]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 3
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][3]
Hyperbolic Volume Not hyperbolic
A-Polynomial See Data:5 1/A-polynomial

[edit Notes for 5 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 5 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (3, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10χ
-3     11
-5     11
-7   1  1
-9      0
-11 11   0
-13      0
-151     -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[5, 1]]
Out[2]=  
5
In[3]:=
PD[Knot[5, 1]]
Out[3]=  
PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3], 
  X[9, 4, 10, 5]]
In[4]:=
GaussCode[Knot[5, 1]]
Out[4]=  
GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]
In[5]:=
BR[Knot[5, 1]]
Out[5]=  
BR[2, {-1, -1, -1, -1, -1}]
In[6]:=
alex = Alexander[Knot[5, 1]][t]
Out[6]=  
     -2   1        2

1 + t - - - t + t

t
In[7]:=
Conway[Knot[5, 1]][z]
Out[7]=  
       2    4
1 + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[5, 1], Knot[10, 132]}
In[9]:=
{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}
Out[9]=  
{5, -4}
In[10]:=
J=Jones[Knot[5, 1]][q]
Out[10]=  
  -7    -6    -5    -4    -2
-q   + q   - q   + q   + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[5, 1], Knot[10, 132]}
In[12]:=
A2Invariant[Knot[5, 1]][q]
Out[12]=  
  -22    -20    -18    -14    -12    2     -8    -6

-q - q - q + q + q + --- + q + q

                                    10
q
In[13]:=
Kauffman[Knot[5, 1]][a, z]
Out[13]=  
   4      6      5      7      9        4  2      6  2    8  2

3 a + 2 a - 2 a z - a z + a z - 4 a z - 3 a z + a z +

  5  3    7  3    4  4    6  4
a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}
Out[14]=  
{0, -5}
In[15]:=
Kh[Knot[5, 1]][q, t]
Out[15]=  
 -5    -3     1        1        1        1

q + q + ------ + ------ + ------ + -----

            15  5    11  4    11  3    7  2
q t q t q t q t