L10a114

From Knot Atlas
Jump to: navigation, search

L10a113.gif

L10a113

L10a115.gif

L10a115

Contents

L10a114.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a114 at Knotilus!


Link Presentations

[edit Notes on L10a114's Link Presentations]

Planar diagram presentation X12,1,13,2 X20,9,11,10 X14,3,15,4 X16,5,17,6 X18,7,19,8 X4,15,5,16 X6,17,7,18 X8,19,9,20 X2,11,3,12 X10,13,1,14
Gauss code {1, -9, 3, -6, 4, -7, 5, -8, 2, -10}, {9, -1, 10, -3, 6, -4, 7, -5, 8, -2}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10a114 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(2)^3 t(1)^4-t(2)^4 t(1)^3+t(2)^3 t(1)^3-t(2)^2 t(1)^3-t(2)^3 t(1)^2+t(2)^2 t(1)^2-t(2) t(1)^2-t(2)^2 t(1)+t(2) t(1)-t(1)-t(2)}{t(1)^2 t(2)^2} (db)
Jones polynomial \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}-\frac{1}{q^{27/2}}+\frac{1}{q^{25/2}}-\frac{2}{q^{23/2}}+\frac{3}{q^{21/2}}-\frac{3}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{13/2}}-\frac{2}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial z^5 a^{11}+5 z^3 a^{11}+6 z a^{11}+a^{11} z^{-1} -z^7 a^9-6 z^5 a^9-11 z^3 a^9-7 z a^9-a^9 z^{-1} -z^7 a^7-6 z^5 a^7-10 z^3 a^7-4 z a^7 (db)
Kauffman polynomial -z^3 a^{17}+2 z a^{17}-z^4 a^{16}+z^2 a^{16}-z^5 a^{15}+z^3 a^{15}-z a^{15}-z^6 a^{14}+2 z^4 a^{14}-3 z^2 a^{14}-z^7 a^{13}+3 z^5 a^{13}-4 z^3 a^{13}+z a^{13}-z^8 a^{12}+4 z^6 a^{12}-6 z^4 a^{12}+4 z^2 a^{12}-z^9 a^{11}+6 z^7 a^{11}-15 z^5 a^{11}+19 z^3 a^{11}-8 z a^{11}+a^{11} z^{-1} -2 z^8 a^{10}+10 z^6 a^{10}-15 z^4 a^{10}+9 z^2 a^{10}-a^{10}-z^9 a^9+6 z^7 a^9-13 z^5 a^9+15 z^3 a^9-8 z a^9+a^9 z^{-1} -z^8 a^8+5 z^6 a^8-6 z^4 a^8+z^2 a^8-z^7 a^7+6 z^5 a^7-10 z^3 a^7+4 z a^7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-6          11
-8         110
-10        1  1
-12       11  0
-14      21   1
-16     11    0
-18    22     0
-20   11      0
-22  12       -1
-24  1        1
-2611         0
-281          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a113.gif

L10a113

L10a115.gif

L10a115