L10a115

From Knot Atlas
Jump to: navigation, search

L10a114.gif

L10a114

L10a116.gif

L10a116

Contents

L10a115.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a115 at Knotilus!


Link Presentations

[edit Notes on L10a115's Link Presentations]

Planar diagram presentation X12,1,13,2 X20,9,11,10 X14,3,15,4 X16,5,17,6 X4,15,5,16 X8,17,9,18 X18,7,19,8 X6,19,7,20 X2,11,3,12 X10,13,1,14
Gauss code {1, -9, 3, -5, 4, -8, 7, -6, 2, -10}, {9, -1, 10, -3, 5, -4, 6, -7, 8, -2}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a115 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^4 \left(-v^2\right)-2 u^3 v^3+2 u^3 v^2-u^3 v-u^2 v^4+2 u^2 v^3-3 u^2 v^2+2 u^2 v-u^2-u v^3+2 u v^2-2 u v-v^2}{u^2 v^2} (db)
Jones polynomial -\frac{4}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{23/2}}-\frac{3}{q^{21/2}}+\frac{5}{q^{19/2}}-\frac{6}{q^{17/2}}+\frac{7}{q^{15/2}}-\frac{7}{q^{13/2}}+\frac{5}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial z^3 a^{11}+3 z a^{11}+a^{11} z^{-1} -z^5 a^9-3 z^3 a^9-2 z a^9-a^9 z^{-1} -2 z^5 a^7-7 z^3 a^7-5 z a^7-z^5 a^5-3 z^3 a^5-z a^5 (db)
Kauffman polynomial -z^5 a^{15}+4 z^3 a^{15}-4 z a^{15}-z^6 a^{14}+2 z^4 a^{14}-z^7 a^{13}+z^5 a^{13}+z^3 a^{13}-z^8 a^{12}+2 z^6 a^{12}-5 z^4 a^{12}+6 z^2 a^{12}-z^9 a^{11}+4 z^7 a^{11}-12 z^5 a^{11}+13 z^3 a^{11}-6 z a^{11}+a^{11} z^{-1} -3 z^8 a^{10}+10 z^6 a^{10}-16 z^4 a^{10}+7 z^2 a^{10}-a^{10}-z^9 a^9+2 z^7 a^9-3 z^5 a^9+2 z^3 a^9-4 z a^9+a^9 z^{-1} -2 z^8 a^8+5 z^6 a^8-4 z^4 a^8-3 z^7 a^7+10 z^5 a^7-11 z^3 a^7+5 z a^7-2 z^6 a^6+5 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         21-1
-8        2  2
-10       32  -1
-12      42   2
-14     33    0
-16    34     -1
-18   23      1
-20  13       -2
-22  2        2
-2411         0
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a114.gif

L10a114

L10a116.gif

L10a116