L10a12

From Knot Atlas
Jump to: navigation, search

L10a11.gif

L10a11

L10a13.gif

L10a13

Contents

L10a12.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a12 at Knotilus!


Link Presentations

[edit Notes on L10a12's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,8,15,7 X18,11,19,12 X20,16,5,15 X16,20,17,19 X12,17,13,18 X8,14,9,13 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, 3, -8, 10, -2, 4, -7, 8, -3, 5, -6, 7, -4, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a12 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^3-6 u v^2+9 u v-3 u-3 v^3+9 v^2-6 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{6}{q^{9/2}}-q^{7/2}+\frac{9}{q^{7/2}}+3 q^{5/2}-\frac{12}{q^{5/2}}-7 q^{3/2}+\frac{13}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+10 \sqrt{q}-\frac{12}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 z^{-1} -3 a^5 z-a^5 z^{-1} +3 a^3 z^3+a^3 z-a^3 z^{-1} -z a^{-3} -a z^5+2 z^3 a^{-1} +a z+2 a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a^3 z^9-a z^9-3 a^4 z^8-7 a^2 z^8-4 z^8-3 a^5 z^7-8 a^3 z^7-10 a z^7-5 z^7 a^{-1} -2 a^6 z^6+2 a^4 z^6+10 a^2 z^6-3 z^6 a^{-2} +3 z^6-a^7 z^5+3 a^5 z^5+20 a^3 z^5+26 a z^5+9 z^5 a^{-1} -z^5 a^{-3} +3 a^6 z^4-a^4 z^4-7 a^2 z^4+5 z^4 a^{-2} +2 z^4+3 a^7 z^3+a^5 z^3-20 a^3 z^3-26 a z^3-6 z^3 a^{-1} +2 z^3 a^{-3} +3 a^4 z^2+6 a^2 z^2-2 z^2 a^{-2} +z^2-3 a^7 z-2 a^5 z+9 a^3 z+13 a z+4 z a^{-1} -z a^{-3} -a^6-2 a^4-3 a^2-1+a^7 z^{-1} +a^5 z^{-1} -a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
8          11
6         2 -2
4        51 4
2       52  -3
0      75   2
-2     76    -1
-4    56     -1
-6   47      3
-8  25       -3
-10 15        4
-12 1         -1
-141          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a11.gif

L10a11

L10a13.gif

L10a13