L10a13

From Knot Atlas
Jump to: navigation, search

L10a12.gif

L10a12

L10a14.gif

L10a14

Contents

L10a13.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a13 at Knotilus!


Link Presentations

[edit Notes on L10a13's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,13,17,14 X14,7,15,8 X8,15,9,16 X20,18,5,17 X18,12,19,11 X12,20,13,19 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, 4, -5, 10, -2, 7, -8, 3, -4, 5, -3, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a13 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^5+2 t(1) t(2)^4-4 t(2)^4-5 t(1) t(2)^3+7 t(2)^3+7 t(1) t(2)^2-5 t(2)^2-4 t(1) t(2)+2 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{5/2}-3 q^{3/2}+6 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{13}{q^{5/2}}+\frac{11}{q^{7/2}}-\frac{10}{q^{9/2}}+\frac{6}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)-a^7 z^{-1} +3 a^5 z^3+6 a^5 z+4 a^5 z^{-1} -2 a^3 z^5-6 a^3 z^3-8 a^3 z-4 a^3 z^{-1} -a z^5-a z^3+z^3 a^{-1} +a z^{-1} +z a^{-1} (db)
Kauffman polynomial -a^5 z^9-a^3 z^9-3 a^6 z^8-7 a^4 z^8-4 a^2 z^8-3 a^7 z^7-9 a^5 z^7-12 a^3 z^7-6 a z^7-a^8 z^6+3 a^6 z^6+7 a^4 z^6-2 a^2 z^6-5 z^6+9 a^7 z^5+32 a^5 z^5+33 a^3 z^5+7 a z^5-3 z^5 a^{-1} +3 a^8 z^4+10 a^6 z^4+16 a^4 z^4+15 a^2 z^4-z^4 a^{-2} +5 z^4-9 a^7 z^3-32 a^5 z^3-31 a^3 z^3-5 a z^3+3 z^3 a^{-1} -3 a^8 z^2-13 a^6 z^2-21 a^4 z^2-15 a^2 z^2+z^2 a^{-2} -3 z^2+4 a^7 z+17 a^5 z+16 a^3 z+2 a z-z a^{-1} +a^8+4 a^6+7 a^4+4 a^2+1-a^7 z^{-1} -4 a^5 z^{-1} -4 a^3 z^{-1} -a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         2 2
2        41 -3
0       62  4
-2      75   -2
-4     65    1
-6    57     2
-8   56      -1
-10  26       4
-12 14        -3
-14 2         2
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a12.gif

L10a12

L10a14.gif

L10a14