L10a121

From Knot Atlas
Jump to: navigation, search

L10a120.gif

L10a120

L10a122.gif

L10a122

Contents

L10a121.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a121 at Knotilus!


Link Presentations

[edit Notes on L10a121's Link Presentations]

Planar diagram presentation X12,1,13,2 X20,5,11,6 X16,3,17,4 X10,15,1,16 X8,19,9,20 X18,9,19,10 X4,17,5,18 X2,11,3,12 X6,13,7,14 X14,7,15,8
Gauss code {1, -8, 3, -7, 2, -9, 10, -5, 6, -4}, {8, -1, 9, -10, 4, -3, 7, -6, 5, -2}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a121 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^4 \left(-v^2\right)-3 u^3 v^3+5 u^3 v^2-3 u^3 v-u^2 v^4+5 u^2 v^3-9 u^2 v^2+5 u^2 v-u^2-3 u v^3+5 u v^2-3 u v-v^2}{u^2 v^2} (db)
Jones polynomial -\frac{1}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{11}{q^{11/2}}-\frac{14}{q^{13/2}}+\frac{16}{q^{15/2}}-\frac{14}{q^{17/2}}+\frac{11}{q^{19/2}}-\frac{8}{q^{21/2}}+\frac{3}{q^{23/2}}-\frac{1}{q^{25/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{11} z^3+a^{11} z+a^{11} z^{-1} -a^9 z^5+2 a^9 z-a^9 z^{-1} -3 a^7 z^5-9 a^7 z^3-7 a^7 z-a^5 z^5-2 a^5 z^3-a^5 z (db)
Kauffman polynomial -z^5 a^{15}+2 z^3 a^{15}-z a^{15}-3 z^6 a^{14}+4 z^4 a^{14}-z^2 a^{14}-6 z^7 a^{13}+12 z^5 a^{13}-12 z^3 a^{13}+7 z a^{13}-5 z^8 a^{12}+3 z^6 a^{12}+6 z^4 a^{12}-5 z^2 a^{12}-2 z^9 a^{11}-8 z^7 a^{11}+18 z^5 a^{11}-9 z^3 a^{11}+z a^{11}+a^{11} z^{-1} -10 z^8 a^{10}+12 z^6 a^{10}+4 z^4 a^{10}-8 z^2 a^{10}-a^{10}-2 z^9 a^9-8 z^7 a^9+18 z^5 a^9-9 z^3 a^9+z a^9+a^9 z^{-1} -5 z^8 a^8+3 z^6 a^8+6 z^4 a^8-5 z^2 a^8-6 z^7 a^7+12 z^5 a^7-12 z^3 a^7+7 z a^7-3 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+2 z^3 a^5-z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         31-2
-8        5  5
-10       63  -3
-12      85   3
-14     86    -2
-16    68     -2
-18   58      3
-20  36       -3
-22  5        5
-2413         -2
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}^{3}
r=-8 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-7 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a120.gif

L10a120

L10a122.gif

L10a122